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FOREWORD 

The DARPA Smart Sensor Program, under the leadership of LTC Carlstrom, 
brought together a collection of teams each of which combined Educational 
and Industrial Laboratories.  This report documents the contributions of 
the team consisting of the University of Maryland and Westinghouse Defense 
and Electronics System Center and the US Army Night Vision and Electro- 
Optics Laboratories. 

The teamwork of Government, Educational Institution, and Industrial 
Laboratory was, in this case, highly productive.  The initial concept 
design was influenced by an understanding of the limitations of hardware 
implementation and the hardware design considerations validly reflected 
the needs of system algorithm design.  Both reflect well the constraints of 
militarily relevant missions. 

The spirit of cooperation and productivity were enhanced by monthly 
program reviews attended by all three principal research personnel which 
allowed many iterations of the design process in a short period of time. 
The result was a great decrease in the delay usually encountered on 
transferring a new idea from basic research to implementation in military 
hardware. 

Ä>^tr* ****** 
GEORGE^*, ii ii in» i 
Visioiftcs  Division 
Night Vision & Electro-Optics Laboratories 
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1.  Introduction 

This is the Final Report on Contract DAAG53-76-C-0138, 

"Algorithms and Hardware Technology for Image Recognition", 

covering research conducted during the period 1 May 19 76 

through 31 January 1978.  The Contract was funded under DARPA 

Order 3206, and was monitored by the U. S. Army Night Vision 

Laboratory, Fort Belvoir, VA.  The project monitors were 

Mr. John S. Dehne and Dr. George R. Jones of NVL.  The 

principal investigators were Profs. David L. Milgram and 

Azriel Rosenfeld of the University of Maryland.  A subcontract, 

entitled "Recognition Technology for a Smart Sensor", was 

awarded to the Westinghouse Defense and Electronics Systems 

Center; it was directed by Dr. Glenn E. Tisdale, program 

manager, and Mr. Thomas J. Willett.  Monthly meeting were held 

in which key NVL, Maryland, and Westinghouse personnel parti- 

cipated. 

Under the contract, algorithms for detecting and classify- 

ing tactical targets on forward-looking infrared (FLIR) 

imagery were developed.  The subcontract investigated the im- 

plementability of these algorithms in charge-coupled device 

(CCD) technology, and also successfully implemented one basic 

function, sorting.  A list of the principal accomplishments 

under the contract is given in Section 2.  Section 3 reviews 

the Maryland work on algorithms, including image modelling, 

pre- and post-processing, segmentation, feature extraction, 

and classification.  Section 4 reviews the Westinghouse efforts. 
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A list of reports and publications generated under the con- 

tract is given in Section 5. 
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2.  Summary of Accomplishments 

1. Design and implementation of a comprehensive algorithm 

for object recognition in FLIR imagery with a detec- 

tion rate above 95% and a false alarm rate between 1 

and 2 false alarms per frame. 

2. Fabrication and testing of a CCD sorter chip capable 

of operating at 3 megapixels/sec.  The sorter function 

is a crucial step in several image operations includ- 

ing histogramming, median filtering, non-maximum 

suppression and connected component coloring. 

3. Investigation of the cost, performance and constraint 

tradeoff in implementing a target cueing algorithm in 

CCD (charge-coupled device) technology.  The result- 

ing design is within specifications for usage in smart 

sensors. 

4. Development of the "Superslice" algorithm for reliable 

region extraction based on the cooccurrence of border 

points of regions with locally maximum edge detector 

responses.  This is an important example of the use 

of convergent evidence to strengthen assertions. 

5. Design and analysis of statistical models for threshold 

selection, image operation response prediction, and 

optimal edge detection. 

6. A new method for adaptive quantization of an image 

which reduces the number of gray levels present using 

only the histogram. 

7. Comparison of image smoothing methods, including 

median filtering. 

8. A study of shrink/expand noise cleaning schemes, in- 

cluding a local min/max method which cleans the image 

prior to thresholding. 

9. Evaluation of a variety of edge detectors and the de- 

2-1 



velopment of a reliable method for edge thinning. 

10. Construction of a "fuzzy" thinning algorithm which 

allows thinning to occur in gray level images prior 

to thresholding. 

11. Development of methods for threshold selection based 

on gray level and gradient value. 

12. Generalization of thresholding to the multiple object 

class environment with the ability to predict appro- 

priate (gray level, gradient value) segmentation re- 

gions for the object classes present. 

13. A variable thresholding scheme which produces a binary 

(or ternary) representation of an image. 

14. An extension of threshold selection for sequences of 

images. 

15. Simplification of the logic of the standard connected 

component coloring algorithm and its extension to 

produce a chain encoding of the component boundary in 

a single pass. 

16. Implementation of Hyperslice:  a recursive segmenta- 

tion which improves the Ohlander region extraction 

method. 

17. An algorithm for region tracking in image sequences 

using dynamic programming. 

18. Comparison of features for target recognition. 

19. Construction of a hierarchical classifier for target 

detection and recognition. 

20. Development of Viewmaster - a software aid to assist 

in the construction of image processing programs. 
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The Westinghouse effort complemented the Maryland effort in 

several ways.  Initially, assistance was provided to Maryland in 

describing the requirements for automatic cueing, and in developing 

a data base of FLIR imagery.  A brief description of the function 

of Westinghouse cueing algorithms was offered for background 

information only. 

During the conception and test of the Maryland cueing algo- 

rithms, Westinghouse carried out an investigation of techniques 

for their implementation, with particular emphasis on charge 

transfer devices.  When processing functions were specified, a 

detailed analysis was then carried out so as to determine the feasi- 

bility of implementing them in CCD's.  This process continued through- 

out the first year of the program. 

During the final nine months, a specific circuit was chosen for 

the fabrication of a demonstration unit.  A sorter function was 

selected because of its occurrence in several cueing operations. 

Chips were fabricated and tested at the Westinghouse Advanced 

Technology Laboratories, and a demonstration unit was assembled 

and shown at the Image Understanding Workshop in October, 1977. 

The unit rearranges a random series of pulses in ascending order by 

magnitude. 

An estimate was also made of the area in monolithic silicon 

required to implement the euer function in CCD's.  The algorithm 

presently proposed by Maryland would require an area of 11-1/4 

by 7-1/2 inches.  If 3-inch bv 3-inch modules were emoloved with 

1/2-inch centers, an equivalent volume would be 3 inches by 3 
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inches by 6 inches.  This volume has positive implications for 

missiles, i.e., Smart Missiles and other airborne platforms. 
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3.   Algorithms 

3.1  Introduction 

This section describes the contribution made by the 

University of Maryland to the state of the art in FLIR target 

recognition and computer vision.  The subsections describe 

the main areas of investigation and cover significant 

advances in image modelling and algorithm development.  Not 

every idea investigated on the project was equally successful; 

this report reflects the main lines of effort, while other 

investigations are documented in the quarterly and semi- 

annual reports [1-4]. 
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3.2   Image models 

The work on image modeling conducted under this 

project was concentrated in three main areas: 

1) Modeling of the joint (gray level, edge value) 

statistics of FLIR scenes, as a basis for de- 

fining threshold selection techniques. 

2) Modeling of thresholding and edge detection 

responses to background regions, as a basis for 

predicting false alarm rates. 

3) Modeling edges in images as a basis for defining 

optimal edge detection operations and for evalu- 

ating edge detector output. 

This work is briefly summarized in the following subsections 

References are given to earlier project reports in which 

detailed treatments can be found. 
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3.2.1 Model-based threshold selection 

An approach to modeling FLIR imagery has been developed, 

based on the simplifying assumption that targets appear as 

homogeneous hot regions within a homogeneous cooler surround. 

This model describes the joint probability density of gray 

level and edge strength in such images, for various edge- 

detecting operations [1,2].  In brief, the model predicts 

that for low edge values (corresponding to points in the 

interiors of objects and background), there should be two 

relatively well separated probability peaks, of different 

sizes, representing the gray levels of object and background 

interiors, respectively.  For higher edge values, corres- 

ponding to points on object/background borders, these peaks 

should merge together and become a single peak representing 

the border range of gray levels. 

The model just described can be used as a guide to 

segmenting FLIR images by thresholding.  At low edge values, 

it should be easy to pick a threshold at a gray level in 

the valley between the two probability peaks, since these 

are relatively well separated.  At high edge values, the 

peak gray level value itself, or perhaps the mean gray level, 

should be a good threshold, since this represents the "center" 

of the edges.  For intermediate edge values, one can com- 

promise between these two thresholds in various ways.  A 

comparative study of threshold selection schemes based on 

this approach has been conducted [5].  This work will be 

discussed further in Section 3.5. 
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3.2.2 Operator response prediction 

a)  Predicting results of thresholding 

Thresholding images is a common process and much 

work has been directed towards selecting the correct value 

at which to threshold and estimating the expected error. 

Normally, one thresholds only images which contain some 

signal.  Thresholding pure noise is to be avoided when possi- 

ble.  Since there may be occasions when thresholding noise 

is unavoidable (e.g., a poor threshold was chosen), it is 

important to predict the expected results.  The expected 

number of above-threshold regions that result when noise is 

thresholded is useful in planning for data structure storage 

allocation and in predicting false alarm rates.  When a bad 

threshold "breaks up" an object, knowledge of the expected 

sizes and shapes of noise regions can be used to help dis- 

criminate object fragments from noise.  No methods currently 

exist for predicting the number of connected components of 

thresholded spatially correlated signal (or noise).  However, 

it has been found possible f6] to estimate the moments of 

regions, the density of border points, and lower bounds on 

the number of connected components in thresholded noise 

images.  The input grayscale image is modeled as a two- 

dimensional random process (stationary random field) char- 

acterized by its mean and power spectrum.  Tests with both 

synthetic data (smoothed noise) and actual data were con- 

ducted to compare the predicted and measured responses. 
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The predictions are worst for thresholds at or near the 

mode of the noise distribution, but in general, the compari- 

son showed reasonable agreement between the predicted and 

measured values. 

b)  Predicting edge detector response 

Statistical response prediction for edge operators 

can be used to determine the nature of further processing 

of the response.  If edge detector output is to be thinned 

or thresholded, the false alarm and false dismissal rates 

depend on the statistics of the operator responses.  A study 

has been conducted [7] which discusses the statistical 

properties of the outputs of some edge detectors operating 

on a general class of images. 

The image model considered is the same as in (a) 

just above; this model is appropriate for predicting the 

response of edge detectors to background noise.  The edge 

detectors analyzed are the Laplacian and its absolute value, 

and the absolute difference of averages over adjacent 2x2 and 

4x4 neighborhoods.  The response features which were measured 

are the mean edge response at each point, the variance, the 

auto-covariance, and the cross-covariance of gray level 

and edge value at a number of displacements.  In addition, 

the density of the local maxima of edge values was computed. 

Tests using a set of synthetic background images showed good 

conformity to the predicted features. 
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3.2.3  Edge modeling 

a) Optimal edge detection 

Many optimality criteria have been proposed for 

edge detection.  Among the most well known is that devised 

by Hueckel [8,9].  It involves fitting an ideal parameterized 

step edge to the image data so as to minimize the mean 

squared error.  A new optimal detector has been designed 

[10] that simplifies several assumptions associated with 

the Hueckel detector and thereby solves an easier optimiza- 

tion problem.  Specifically, by assuming that the local mean 

is zero and the local variance is unity, two Hueckel para- 

meters can be eliminated.  Further simplifications follow if 

the operator can be applied at each point with the edge 

assumed to pass through the center (or not to exist at all). 

The resulting formulation can be tuned to favor edges with 

known a priori probabilities.  The computational effort 

involved in applying the operator may be reduced by solving 

the associated cubic equation using a simple iterative approxi- 

mation, such as Newton's formula.  Testing on actual data 

has verified that this approach provides greater sensitivity 

to edge orientation than a previously proposed [11] simpli- 

fication of the Hueckel operator. 

b) Evaluation of edge operators 

The Hueckel operator defined in [9] has been 

found to incorporate a theoretical flaw leading to eccentric 

behavior in textured images.  An operator which is conceptually 
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similar but apparently more dependable has been defined [12]. 

Comparative tests have been made of tnis ana several other 

operators (including Hueckel's [9], its simplification [11], 

and the new optimal operator defined in [10], as well as the 

very simple Sobel operator), to evaluate their adequacy in 

obtaining the magnitude, direction, and reliability of the 

edge response at some set of image points, for both ideal 

and distorted images.  The performances of these operators 

were, in general, closely related to their sizes (and hence, 

to their computational costs).  All of the local operators 

were able to detect the directions of distorted edges on 

small (6x6) domains to an accuracy of about 10°, and their 

magnitudes to within about 10%.  On larger (9x9) domains, 

angular resolution was improved, but ramps became significant 

as a source of spurious responses.  The Sobel operator was 

judged to perform better than the operator of [11]. The 

operator of [10] was better able to reject ramps on larger 

domains, but it is more expensive to apply than the other 

local operators.  The regional operators of [9] and [12] 

performed similarly; the latter was less affected by the 

presence of imperfections. 

3-7 



3.3   Preprocessing 

Preprocessing refers to those transformations applied 

to the raw image data for the purpose of correcting, simplify- 

ing and regularizing the imagery.  The resulting images should 

therefore be more amenable to further processing and more 

alike in certain properties essential to subsequent algorithms, 

Thus, for example, sampling and windowing reduce the size 

of the image to be processed.  Histogram transformation and 

requantization convert all image quantization levels to a 

range which facilitates feature extraction.  Smoothing re- 

inforces regional uniformity and decreases the effects of 

certain kinds of noise. 

Preprocessing steps are best justified by the problem 

environment itself.  A knowledge of the sensor characteristics 

and geometry will suggest various kinds of radiometric and 

geometric  corrections.  For example, with FLIR data, the 

image is best understood as an array of thermal measurements. 

If these measurements reflect the ground truth, then much 

more subtle distinctions can be made; recognizing that a 

particular temperature is beyond the normal range for a 

vehicle can, perhaps, indicate that the vehicle is on fire. 

Similarly, a range map converting pixels to actual size/area 

measurements can allow a viewer or a program to gauge the 

size of a particular region and thereby discern its identity 

more reliably. 
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In the problem environment at hand it was not possible 

to acquire substantial information concerning the sensor or 

the imaging situation, due to classification problems.  Thus 

the "intelligent" corrections of the previous paragraph were 

impossible.  However, several preprocessing steps do make 

sense.  The following subsections describe them. 
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3.3.1  Sampling 

According to the sampling theorem, the spacing of the 

data points should be half the size of the smallest feature 

to be detected.  Thus, to detect objects of one meter on a 

side, pixels should correspond to one half meter on a side. 

In practice, however, the presence of noise demands that 

the data be redundant to increase the reliability of the 

extraction process.  A finer resolution can often provide 

this redundancy.  Naturally, the price must be paid in 

additional processing time.  This tradeoff is difficult to 

model analytically especially since many different features 

are extracted from an image and their relative importance is 

difficult to.assess. 

Two processes for region extraction are paramount 

for our work — thresholding for whole region extraction and 

edge detection for region border verification.  Of these two, 

edge detection is more sensitive to noise.  The degree of 

sampling allowable for the image data set should therefore 

not be so great that reliable edge extraction is compromised. 

A 2-to-l size reduction (eliminating every other row and 

column) was found to be compatible with reliable edge detection, 

In the unsampled images, the average edge ramp cross-section 

was found to be about 5 pixels wide; thus a 2-to-l reduction 

gave about a 3-pixel edge ramp which was consistent with the 

need to localize edges fairly accurately. 
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An alternative approach attempted to reduce high 

frequency noise by extracting windows based on 2x2 averaging 

rather than sampling.  Thus, instead of discarding every 

other row and column, each pixel in the sampled image was 

the average over a (disjoint) 2x2 neighborhood in the 

original image.  A smooth, less noisy image was produced and 

row dropouts were partially eliminated.  However, the images 

seemed to have less contrast.  Sampling followed by smoothing 

appears to be better than smoothing followed by sampling. 

A major emphasis in the project has been the detection 

of small or faint targets.  For this reason, the sampled 

images were also windowed so as to capture the target regions 

and to further reduce the computational load.  Naturally, one 

must avoid techniques which assume that each window contains 

exactly one target in its central region.  This dilemma 

asserts itself in subtle ways.  Statistical  properties of 

the window, e.g., histogram, central moments, etc. are good 

predictors of object presence, threshold, etc.  However, 

they cannot be employed in practice unless window size is 

correctly estimated and window border situations are handled. 

Our approach does not depend on window size (or frame size) 

and therefore windowing is an appropriate preprocessing step. 

Note, however, that estimates of the false alarm rate cannot 

be reliably derived solely from target windows.  For this 

reason, small noise windows (containing no targets) and 

large windows (consisting mainly of background clutter) were 

also processed. 
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3.3.2  Histogram transformations and adaptive quantization 

Sensor output is related to actual phenomena according 

to physical laws.  If this correspondence is well under- 

stood beforehand, it is possible to correct and transform 

the data to improve subsequent processing.  Thus if FLIR 

data could be used to estimate reliably the temperature of 

objects, then quite stringent tests could be made to enhance 

recognition rates.  Unfortunately, the analytic interpretation 

of FLIR data at long range is complicated by many effects 

such as sun-angle, wind, smoke, surface composition, etc. 

Furthermore, the sensor hardware itself is subject to un- 

predictable electronic noise, disturbances and failures. 

Only some of these effects can be alleviated and then (due 

in part to the classified nature of the sensor) only statisti- 

cally. 

Among the conventional gray level modifications con- 

sidered useful for producing more manageable imagery are the 

rather simple histogram mapping techniques.  Figure 3.3.1a 

illustrates the gray level histogram of an unmodified image. 

The gray level range is defined by eight bits-256 gray levels — 

and can be seen to exhibit significant non-uniformities of 

response.  Moreover, from a processing point of view, 256 

gray levels do  not effectively reflect the true gray level 

range and contrast.  A simple 2-bit shift operation,converting 

8-bit pixels to 6 bits, has the effect seen in Figure 3.3.1b 

of smoothing the histogram while reducing the gray level 
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range to 64 gray levels.  This technique if continued for 

further shifts would ultimately combine significant peaks 

corresponding to object/background contrast.  However, the 

conversion from 8-bit to 6-bit was found to be justified, as 

it alleviated non-uniform sensor response without destroying 

target discriminability. 

If one assumes that a scene consists of the 

juxtaposition of objects of uniform temperature taken from a 

small number of such temperatures, then it is possible to 

convert the image into one with only a few different gray 

levels present.  An attempt at adaptive requantization is 

described in  [13].      Briefly, an iterative process 

constructs a new histogram from the previous version by 

identifying gray level peaks and having them gain strength 

(Le. , points) from neighboring non-peaks while the non-peak 

areas are thereby depleted.  The result is a mapping from 

the original gray level domain to a new sparse set of gray 

levels. The resulting requantized images (Figure  3.3.2) 

seem not to have lost object/background discriminability. 
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a. 

b. 

c. 

Figure 3.3.2 Result of four iterations of the 
peak sharpening process using 
neighborhood sizes of 2, 3, and 
4 for (a-b), sizes 2, 4, and 5 
for (c) . 
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3.3.3  Image smoothing 

In the previous section, preprocessing steps were 

described which contributed to the interpretation of a scene 

as a mosaic of uniform sensor responses.  The techniques 

considered the gray level population only.  Proximity was not 

involved.  In this section, we discuss attempts to smooth 

the image spatially so that nearby points from the same 

region will have more nearly identical gray levels.  There 

are a number of justifications for spatial image smoothing. 

First, by making the image spatially more uniform, one 

increases the probability that points belonging to the same 

region will be treated identically.  Thus, the point sets 

extracted by thresholding will appear better defined with 

fewer pinholes and fewer isolated points.  This is reasonable 

since the chosen image resolution is intended to cover any 

object with numbers of pixels.  The second reason for smooth- 

ing is to eliminate insignificant local changes of contrast. 

Otherwise the output of edge detection operations based on 

differencing would contain many tiny spurious edges which 

tend to obscure the proper edge signals.  Third, the statisti- 

cal properties of a smoothed image are more representative 

of the   true situation.  Thus, many decisions based on the 

statistics of the smoothed image are more reliable. 

Two methods of image smoothing were investigated. 

In a first attempt, the mean value of a fixed neighborhood 

about each point replaced the point's value.  Figure 3.3.3a 
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shows the effect of replacing each point of a step edge by 

its mean value (blurring).  As is evident, blurring smears 

edges. Figure 3.3.4a-d illustrates blurring for several target 

windows, and also shows the histograms of these windows before 

and after blurring.  Note that blurring tends to blend peaks 

in histograms, thus making thresholding more difficult.  Also, 

small faint objects tend to become less distinct. 

A second approach to image smoothing has the property 

of preserving edges.  At each point of an image, the median 

value of the gray levels over a kxk neighborhood is computed. 

The value of k depends on the amount of local noise variation. 

For the original images, a 5x5 neighborhood size was chosen. 

Figure 3.3.3b illustrates the effects of median filtering or. 

a step edge.  Note that the median does not increase the 

ramp width.  Thus edges do not smear.  This is demonstrated 

in the two-dimensional case in Figures 3.3.5-3.3.7 for a 

tank image.  Median filtering does, however, round off sharp 

corners.  This was not a serious problem in this data base. 

Figure 3.3.4e-f illustrates a number of median filtered 

windows and their histograms.  The general algorithm for 

2 2 median computation over k points is of order k .  However, 

better results may be obtained when evaluating a running 

median, by making use of the high autocorrelation of gray 

2 
level in most images.  The cumulative histogram of the k 

data points is maintained in a vector of length d (e.g., d=64) 

The k deletions and k insertions are interleaved in pairs. 
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a.  Mean filtering b.  Median filtering 

Figure 3.3.3.  Effect of filtering on 
step edges using a five 
point neighborhood. 
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a.  Originals, b.  Histograms of (a) 

•*•■ 

c.  3x3 mean filtered 
windows. 

d.  Histograms of (c) 

Image Reference: 3R 4T 6T 24T 
34R 35R 41R 52R 
21A 22A 23A 37A 
14N 20N 26N 38N 

Figure 3.3.4.  Comparison of mean and median 
filtering. 
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e.  3x3 median filtered 
windows. 

f.  Histograms of (e) 

Figure 3.3.4 (continued) 
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c. 

Figure 3.3.5.  Gray level images. 

Original FLIR image of a tank. 
Note the noise content and the 
presence of a thin noise line at 
the upper left. 

Mean filtered image using a 5x5 
square neighborhood at each 
point.  The tank appears blurred, 
as does the border between the 
road (dark) and the grass (light). 
The thin noise line is smeared 
into the background. 

Median filtered image using a 5x5 
square neighborhood.  The tank 
contours appear sharper, while 
overall the image has been 
smoothed. 
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a. b. 

c. 

Figure 3.3.6.  Results of Edge Detection 

Each of the windows was subjected 
to an edge detection operation which 
detects the most significant edge 
at each point over four orientations. 
Note that edges surround the various 
regions in the image but that the 
edges in the median filtered image 
(c) are sharper and have more con- 
trast than those in the mean filtered 
image (b). 

a. 

b. 

c. 

Edge detection response for the 
original image. 

Same as above for the mean filtered 
image. 

Same as above for the median filtered 
image. 
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a. 

Figure 3.3.7.  Edge Cross Sections 

A single line of the edge detection 
image passing through the tank is 
displayed with height corresponding 
to edge value.  Notice that the 
median filtered response exhibits a 
thinner, higher peak corresponding to 
a sharper, more contrasting edge 
than the mean filtered response. 

a. A single line of edge response from 
Figure 3.3.6a. 

b. Same as above for Figure 3.3.fb. 

c. Same as above for Figure 3.3.be. 
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Each (deletion, insertion) pair isolates a region of the 

vector which must be modified.  The smaller this region on 

the average, the less work to be done.  If the deletion and 

insertion in a given pair affect the same bin, no change is 

necessary.  The length of the region of change in the cumula- 

tive histogram is the expected gray level difference of 

points at distance k.  This corresponds to a variogram value, 

v(k).  After updating, the vector is binary-searched for the 

median.  Thus the number of vector operations is k»v(k), 

followed by log d operations to binary-search the updated 

vector.  The sum k»v(k) + log d should be quite small for 

relatively smooth images. 
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3.4   Edge detection 

The extraction of edge features has proved useful in 

a number of project areas.  Section 3.5 will describe thresh- 

old  selection methods which utilize edge information. 

Edges are used also in the critical step of the Superslice 

algorithm (Section 3.7).  In this section, we discuss the 

variety of edge operations investigated and a method for 

thinning edge response so as to locate the apparent edge. 
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3.4.1 Comparison of methods 

Methods for edge detection abound in the literature 

(for a survey, see [14]).  Some of the simplest methods 

involve convolutions of templates with an image.  A number 

of these were considered in the current work.  These include: 

Laplacian:  |e - (a+b+c+d+f+g+h+i)/8|, where the 

neighborhood of e is 

a b c 
deft 
g h i u 

v w 

Roberts Gradient:  max{|a-e|, |b-d|}. 

Three-by-three:    max!|a+b+c-g-h-i| , |a+d+g-c-f-i|} 

2x2 Difference: 

l/4*max(|d+e+g+h-f-t-i-u|,|b+c+e+f-h-i-v-w|}. 

(In other words, the value corresponds to the 

maximum of the differences between 2x2 averages 

over adjacent pairs of horizontal and vertical 

neighborhoods.  This scheme extends to diagonals also, 

4x4 Difference:  This is the same as the 2x2 difference 

except that averages are taken over 4x4 neighborhoods. 

8x8 Difference:  The same as the previous except that 

averages are taken over 8x8 neighborhoods. 

Experiments with these operators indicated that the 

Laplacian (which is a second difference), the Roberts Gradient 

and the 3x3 Gradient were too sensitive to minute changes in 
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gray level.  The differences of averages operators produced 

better output by virtue of the increased amount of smoothing 

on each side of the edge.  Knowledge that typical edge width 

in the windows was three pixels suggested that the 4x4 

operator could span the edge ramp (to give the maximum 

gradient value) while remaining sensitive enough to detect 

the edges of small faint regions. 
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3.4.2  Edge thinning 

In the world of man-made objects, edges correspond 

to the juxtaposition of surfaces or shadows.  In a well 

focused image, edges should appear sharp and should extend 

in some direction for some length. (In the natural world, 

the boundaries of regions are not necessarily as sharply 

defined, e.g., for trees, fields, etc.) The output of the 

operators described in the previous section, however, are 

generally smeared at or near the true edge location.  None- 

theless, for certain types of image understanding it is 

necessary to localize the edge so that it lies along the 

object boundaries.  Given a knowledge of the edge detector, 

it is possible to design a process which accepts the output 

of the operator and which produces a thinned representation 

of the edge at the location of maximum edge response. 

It is not sufficient to consider simply those points 

of maximum response, since this would force adjacent points 

in the direction of the edge to compete.  This problem can 

be alleviated by taking into account the computed local 

direction of the edge and by placing into competition only 

those points which are normal to the direction of the edge. 

In practice, a  directional mask is associated with each 

edge point oriented normal to the direction of the maximum 

edge response at that point.  The center point is then deleted 

(assigned zero response) if any point within the mask has a 

greater response.  There are four masks: 
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XXX X X 

X                         X X X    X X   X 

x x  0   x  x t 0 o / 0 
X                          X X X    X X    X 

XXX X X 

one associated with each principal edge direction.  The 

process, called "non-maximum suppression," operates simul- 

taneously on all edge values to produce a "thinned" edge map, 

Figure 3.4.1 illustrates the process. 
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Originals. Edge detector output. 
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_ 

^-_lw^" GS&j o 
Thinned edge map. .Thinned edge map thresholded 

to display only edge values 
> 2. 

Figure 3.4.1.  Results of edge detection and non-maximum 
suppression on 43 tank windows. 
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Originals. Edge detector output. 

mg. 

Thinned edge map. Thinned edge map thresholded 
to display only edge values 
> 2. 

Figure 3.4.1 (continued) 
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Originals Edge detector output, 

Thinned edge map. Thinned edge map thresholded 
to display only edge values 
> 2. 

Figure 3.4.1 (continued) 
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3.5   Threshold selection 

The properties of a pixel in a single sensor image 

are its position and its gray level.  Our knowledge of the 

imaging environment allows us to predict an object's gray 

level more accurately than its position.  In fact, the whole 

point of cueing is to locate a target.  Thus one has little 

a priori information about target position; however, inasmuch 

as gray level is related to thermal emission in FLIR data, 

there are some fairly powerful heuristics available to aid 

in target recognition.  For example, we may choose to assume 

that operating vehicles are warmer than the immediate back- 

ground and that they radiate uniformly over their surfaces. 

Naturally, such assumptions are not always possible.  In 

cold weather, metal loses heat faster than the ground; at 

close range, fine thermal detail is visible and the uniformity 

assumption fails.  Nor are these assumptions meant to be 

exclusive, e.g., we do not claim that every object region 

warmer than its surround is a target.  The power of these 

heuristics is to suggest approaches which capture essential 

problem domain knowledge. 

In this project, the force of the heuristics of the 

previous paragraph is to emphasize methods which isolate 

distinct gray level regions from their surrounds.  The 

simplest of such methods is thresholding — the assignment 

of all points whose gray levels are greater than a pre- 

determined level (the threshold) into a single class of 
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potential object points.  The filtering, aggregation and 

ultimate classification of these points are the subjects 

of subsequent sections.  In this section, we discuss our 

investigations of numerous methods for single and multiple 

threshold selection. 

There is a progression in these methods which corres- 

ponds on the one hand to the need for increased sensitivity 

in choosing the "right" threshold and, on the other hand, to 

the deemphasis of the committment to that particular thresh- 

old.   However, we still retain the notion that for each 

object region in the image there is a "best" threshold.  In 

the worst case, every possible threshold yields   a target 

region which is invisible (unextractable) at every other 

threshold.  One must therefore be prepared to threshold at 

any gray level and within that thresholded image to discern 

the target regions and to ignore the noise regions.  These 

last comments appear to call for the selection of every gray 

level as a value at which to threshold.  Indeed, given 

sufficient parallel hardware and powerful target/noise 

discrimination criteria, this brute force approach could lead 

to a reliable and sensitive target euer.  A further dis- 

cussion of this option is in Section 3.7 and some relevant 

experiments are to be found in Section 3.9.  The remainder 

of this section describes techniques for finding appropriate 

thresholds when hardware and throughput considerations allow 

only a few thresholds to be utilized per frame. 
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3.5.1  Threshold selection based on edge values 

In Section 3.2.1 a model was proposed for images 

consisting of objects and background, each with characteristic 

gray level distributions.  If the gray level histogram of 

the image is markedly bimodal, one may choose the threshold 

at the valley between the two peaks (possibly shifted towards 

the smaller peak when using a maximum likelihood estimate). 

However, the smaller the object, the less likely the histogram 

is to exhibit strong bimodality.  The background distribution 

engulfs the object's gray level range and tests for bi- 

modality are inconclusive. 

One approach [15] to solving this problem has been to 

select from the original image a set of points that are as 

likely to fall within the object as within the background. 

If one examines the output of operators which respond to 

edges, then high values should correspond to points falling 

at or near object edges.  The mathematical model has shown 

the gray level distribution to be unimodal with a peak at 

the mean.  Thus, these points are as likely to lie on the 

object as on the background and their mean value should 

correspond to the desired threshold. 

A brief description of the threshold selection method 

is as follows:  Let e(i,j) be the edge value computed at (i,j), 

and let g(i,j) be its gray value.  Then the chosen threshold 

is g = AVG{g(i,j) |e (i,j) ^ t}, where t is lowest edge value 

considered significant.  Computationally, two arrays are 
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needed.  One array, TOTALQ,...,TOTAL63, accumulates the gray 

level g for each edge value e between 0 and 63; i.e., 

TOTAL = TOTAL + g.  The second array, NQ,...,Ng3, tallies 

the number of points at each edge value.  The desired average 

gray level g = ( I    TOTAL.)/{   I     N.). 
i*t     1  i*t 1 

Two parameters were treated in the experimental work: 

the choice of edge operator and the edge significance level 

t.  Previous work with edge operators indicated that the 

4x4 difference of averages operator was superior to the 

others as an edge detector in FLIR scenes.  Experiments in 

threshold selection showed that thresholds chosen based on 

this operator were better overall [1]. 

The proper selection of a value for t is important 

because this parameter controls the size and quality of the 

sample points of high edge value used to compute the gray 

level threshold.  Setting t too high decreases the statisti- 

cal reliability of the sample; while a small t may admit too 

many noise values.  The choice of t depends on the expected 

amount of object edge.  Obviously, many assumptions are built 

into this notion, e.g., that the window contains only a 

single object of known size, shape, contrast, resolution, etc, 

In a tactical situation, one could make estimates of these 

parameters based on situation data.  Based on estimates of 

target size, t was chosen as the edge value corresponding to 

the 95 percentile. This estimate was shown by experiment 
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to provide good thresholds for the windowed data set. This 

is illustrated in Figure 3.5.1. 

The sensitivity of the chosen gray level threshold 

to different choices of t was tested and a graph of the 

threshold was plotted as a function of the gradient cutoff 

t; see Figure 3.5.2.  There is a tendency for this graph to 

drift toward the mean gray value as t is decreased.  The 

chosen threshold is stable for large objects.  For small 

objects, the choice is quite sensitive to the bin size. 

The approach above and several variations [ 5 ] can 

viewed as methods of decision surface selection in (gray 

level, edge value) space.  This space is visualized as a 

two dimensional histogram with gray level along one axis and 

edge value along the other.  Figure 3.5.3 displays such a 

2-D histogram for a hypothetical object on a background. 

Points at A represent background while object points (perhaps 

with some noise) cluster at B.  The bottom part of the U- 

shaped region contains high-edge value points.  As we have 

pointed out, the average gray level of these points is a 

good threshold.  Figure 3.5.1 illustrated 2-D histograms for 

several target windows. 

One may consider a threshold as a vertical decision 

surface separating object from background.  Non-vertical 

partitions of the space have also been investigated [ 2 ] 

and were found to be capable of adding more points to the 

boundaries of object regions without substantially increasing 

3-38 



IT 2T 3T 4T 

6T 8T 9T 10T 

11T 12T 13T 14T 

15T 16T 17T 2 IT 

Originals. Image reference numbers 

i J III 

2-D Histograms. Thresholded windows 
after shrink/expand 
(see Section 3.6.1). 

Figure 3.5.1 Results of thresholding and post- 
processing 4 3 tank windows. 
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22T 23T 24T 26T 

28T 3 IT 32T 33T 

34T 35T 38T 40T 

42T 43T 45T 46T 

Figure   3.5.1   (continued) 
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Figure 3.5.1 (continued) 
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Figure 3.5.3. Ideal 2-D histogram of a scene 
containing an object and back- 
ground with noise. 
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the amount of noise.  Several other partitioning schemes 

which were considered are discussed in [5]. 

3-47 



3.5.2  Slice range selection 

The methods discussed above predict a single thresh- 

old  to be applied to an image.  For images known to contain 

a single object class or for small windows, the use of a 

single threshold is appropriate.  However, in general, no 

single threshold will separate all objects of interest from 

the background.  It is therefore necessary to extend our 

threshold selection concept to allow the choice of multiple 

thresholds. 

Our approach is to produce clusters of points corres- 

ponding to region borders and to associate the average gray 

level of each cluster with a threshold for the corresponding 

region.  Edge detectors select at each point the maximum 

difference of averages of adjacent neighborhoods over several 

directions.  By suppressing non-maximum responses normal to 

the selected direction (i.e., across the edge), thin contours 

result which appear to surround object regions (see Section 

3.7.2).  A by-product of this process are points with very 

low edge value, including values which truncate to zero. 

Such points correspond to the interiors of homogeneous regions 

Figure 3.5.4 illustrates thinned detector responses with 

region interior maxima included.  After thinning, each re- 

maining point is plotted using edge value and average gray 

level in a two-dimensional histogram.  Figure 3.5.5 shows 

examples of images together with their 2-D histograms based 

on thinned edges. 
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Figure 3.5.4a. 
b. 

b. 

LANDSAT Window of Monterey, CA. 
Thinned edge detector response 
(thresholded). 

a 
a. b. c. 

e. f. 

Figure 3.5.5a. 

c. 
a, 
e , 
f . 
y. 
h, 

Disk (gray level 30) within ring (gray 
level 40) within background (gray 
level 20). 
2-D histogram of (a) with gray level as 
x-axis (increasing left to right) and 
edge value as y-axis (stretched — in- 
creasing from top to bottom).  Interior 
of background is leftmost, topmost 
cluster. 
Window  containing house. 
2-D histogram of (c). 
Window containing tank. 
2-D (stretched) histogram of (e). 
LANDSAT window of Monterey. 
2-D histogram (thinned edge vs. average 
gray level). 
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Two types of clusters are produced:  interior clusters 

represent the interiors of regions, edge clusters represent 

boundaries between regions.  The size of a cluster (i.e., 

the number of points in it) is closely related to properties 

of the region it describes.  Thus interior clusters relate 

both to the area of the region and to the size of the neigh- 

borhood over which the local operations (edge detection, 

non-maximum suppression) are defined.  For small object regions, 

there may be no points sufficiently far from the object 

boundary to resist suppression.  Thus, interior clusters may 

be indistinguishable from noise, or may be nonexistent. 

Clusters of points at higher edge values are more 

likely to be significant (based on our homogeneity assumptions). 

The size of an edge cluster is therefore related to the 

perimeter of the surrounded region in the image.  Since peri- 

meter increases (roughly, for digital images) as the square 

root of area, the edge clusters for objects of moderately 

different areas should, nonetheless, be of comparable size. 

A priori estimates of size are of use in discriminating true 

edge clusters from random noise. 

Each edge cluster corresponds (ideally) to these 

interior clusters whose locations can be determined from the 

location of the edge cluster.  Thus a threshold derived from 

the edge cluster will separate the interior clusters.  How- 

ever, care must be taken not to split an interior cluster 

at a threshold since this introduces random noise regions. 
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Figure 3.5.6 illustrates a compound decision surface in the 

2-D histogram of a multi-object image.  For further discussion 

see [16] . 
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Figure 3.5.6a, 

b, 
c, 

Adjacent object regions on 
background (same as Figure 
3.5.5a). 
2-D histogram. 
2-D histogram partitioned  into 
classification  regions. 
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3.5.3  Variable thresholding 

Previous approaches to thresholding apply the same 

threshold to all points of the image.  In  [17], Nakagawa 

adapts the work of Chow and Kaneko [18] to interpolate a 

best threshold for each point of the image.  Briefly, the 

image is divided into small windows (say 32x32) and a test 

of gray level histogram bimodality is made for each window. 

A best threshold is chosen for each bimodal window and 

thresholds are interpolated to all image points.  A binary 

image results when each threshold is applied to its corres- 

ponding pixel value.  Figure 3.5.7 compares fixed thresholding 

and variable thresholding for several FLIR frames.  Nakagawa 

extended this method to allow multiple thresholds(for multi- 

object adjacencies).  Figure 3.5.8 illustrates the results. 
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a. 

•mm 
b. 

Figure 3.5.7 

a. 
b. 

Comparison of fixed and variable 
thresholding. 

Two FLIR frames. 
Two-Gaussian approximations to those 
32x32 window histograms that were 
judged to be bimodal. 
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Figure 3.5.7 (continued) 
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Results of applying the interpolated 
point thresholds to (a). 
Results of applying a fixed threshold 
to (a) . 
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a. b. 

c. 

Figure 3.5.8 

a , 
b, 

Comparison of fixed and variable 
thresholding. 

Machine parts image. 
Two- and three-Gaussian approximations 
to those window histograms that were 
judged to be bi- and tri-modal. 
Three level pictures obtained after 
interpolating the multiple thresholds 
determined from (b) and applied to (a) 
Results of applying a fixed threshold 
to (a) . 
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3.6   Noise cleaning and component labelling 

3.6.1 Shrink/expand and min/max 

The result of thresholding is a binary valued image. 

It often contains isolated points and small noise regions 

which are artifacts of the thresholding and may not be 

readily visible in the original image.  Smoothed images 

tend to have fewer (but larger) noise regions.  One may 

delete noise regions by postprocessing the thresholded image. 

The method consists of multiple applications of two 

processes:  "shrink" and "expand."  The purpose of the 

sequence of shrinks is to shrink objects in a uniform manner 

so that small or insubstantial objects disappear entirely. 

The sequence of expands is meant to regrow the remaining 

shrunken objects to their original size.  The result of the 

shrinks/expands is the elimination of tiny regions (presumed 

to be noise regions). 

Each shrink or expand requires the simultaneous or 

"parallel" application of a local replacement rule at every 

point of the thresholded image.  The form of the shrink rule 

is as follows:  Eliminate all l's adjacent to O's.  Zero 

values are unchanged.  Such a rule decreases the number of 

l's in the thresholded image; thus, the image "shrinks." 

Only l's surrounded by l's will survive a shrink.  The 

number of successive shrinks determines the minimum dia- 

meter of a surviving region. 

The expand rule is similar to the shrink rule: 

rewrite a 0 as a 1 if any of its neighbors are l's, but 
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leave l's unchanged.  Thus points adjacent to l's become 

l's, thereby increasing the number of l's.  If we wish to 

restore objects (that were not eliminated) to about their 

original sizes, t shrinks should be followed by t expands. 

Such a shrink/expand sequence produces an image whose l's 

correspond to (a subset of the) l's in the untransformed 

binary image.  Thus, for example, isolated l's are eliminated, 

and objects joined by narrow necks of l's may become dis- 

connected.  Also, thin protrusions from a region of l's 

will disappear.  Figure 3.6.1 illustrates the shrink/expand 

algorithm for both the 4 and 8 neighbor cases and t = 1,2,3 

(the numbers of shrinks and expands used). 

A generalization of the shrink rule was formulated 

to fill pinholes and conserve small region shape as follows: 

delete a 1 if at least k of its neighbors are O's ( O's 

remain unchanged).  The original shrink rule corresponds to 

k = 1.  If k > 1, it takes more zero evidence to convert 

a 1 to 0.  The generalized expand is analogously defined: 

Rewrite a 0 as 1 if it has at least k l's as neighbors ( l's 

remain unchanged). 

However, the generalized expand rule is not quite as 

generous in providing new 1 values, although it does fill 

pinholes in sufficiently large regions.  Figure 3.6.2 pro- 

vides a comparison for t= 1, 2 and k = 1, 2, 3.  The shrink/ 

expand rule with t = 2 and k = 3 applied to each image point 

and its 8-neighbors provides efficient noise cleaning with 
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Figure 3.6.1. Effects of iterating SHRINK/EXPANDS (S/E's) 

a. Original images - each column is a single 
image thresholded at four different values. 

b. 4-neighbor rule - one S/E 

c. 4-neighbor rule - two S/E's 

d. 4-neighbor rule - three S/E's 

e. 8-neighbor rule - one S/E 

f. 8-neighbor rule - two S/E's 

g. 8-neighbor rule - three S/E's 
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Figure   3.6.1     (continued) 
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Figure   3.6.1   (continued) 
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Figure 3.6.2. Leniency in SHRINK/EXPAND definitions 
for windows thresholded by two methods. 

a. 4-neighbor rule, one S/E, k=l,2,3 

b. 8-neighbor rule, one S/E, k=l,2,3 

c. 4-neighbor rule, two S/E's, k=l,2,3 

d. 8-neighbor rule, two S/E's, k=l,2,3 
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Figure 3.6.2 (continued) 
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Figure 3.6.2 (continued) 
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most noise regions eliminated, pinholes filled, and only a 

modest amount of target shape distortion. 

One may further generalize this process for application 

prior to thresholding.  This technique, called "precleaning", 

involves a sequence of local MIN/MAX operations applied to 

the gray level image (analogous to shrink/expand applied to 

a binary image).  The resulting precleaned image may now 

be thresholded as desired.  The above threshold regions are 

as they would have appeared after shrink/expand processing. 

Figure 3.6.3 illustrates the process.  This work is described 

in [19]. 
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(a) 
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Key: 

Original 

4-nbr. 

MIN-MAX 

MIN2-MAX2 

MIN3-MAX3 

8-nbr. 

MIN-MAX 

MIN2-MAX2 

MIN3-MAX3 

(b) 

(c) 

Figure 3.6.3. Results of applying repeated local MIN and re- 
peated local MAX to three FLIR images.  In each 
part, the upper-left picture is the original; the 
second column uses 4-neighbor local MINs followed 
by 4-neighbor local MAXes (1, 2, and 3 repetitions, 
in the first, second, and third rows); and the 
third column is analogous, using 8-neighbor oper- 
ations (i.e., including the diagonal neighbors). 
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3.6.2 Connected component extraction 

The result of thresholding is a binary image.  After 

noise cleaning operations filter this image (as needed), it 

still remains to aggregate points into identified (labelled) 

regions.  A process which labels the individual disjoint 

regions in the binary image, in a single raster scan, is 

well known in the literature  [20].  It is described briefly 

here. 

A set of l's in a binary image is connected if any 

two points in it can be joined by a path (sequence) of pair- 

wise adjacent points lying in the set.  A maximal connected 

set is called a connected component.  The algorithm to be 

described produces the (unique) decomposition into connected 

components, labels the individual components, and constructs 

for each connected component a descriptive feature vector. 

Although we do not specify the features, it is assumed that 

they are all extractable from a raster scan using a 3x3 

processing window.  Additional storage is available to hold 

the feature values for the components.  Section 3.8.2 

describes the features. 

When a new region is encountered during a raster scan, 

it is assigned a vector of registers to store its feature 

values.  As the region is being tracked on the same row or 

continued on the next row, values continue to be accumulated 

into its feature vector.  In order to specify the corres- 

pondence between a region and its register vector, a label 
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is created and assigned to each point of the region which 

has already been visited.  The label will identify the 

appropriate register vector, usually by some indexing scheme. 

Region points found to be adjacent to already labelled region 

points inherit that label and contribute their feature values 

to its register vector. 

Often a region encountered for what is thought to be 

the first time may on a later row prove to be connected to 

a previously encountered region.  Such regions are called 

subcomponents.  Inasmuch as feature values were being main- 

tained separately for each subcomponent, it becomes necessary 

to combine the feature values (eventually)  and to create 

a flag that signifies that the two subcomponents belong to 

the same component.  These flags reside in the label equi- 

valence table.  This table can be stored either as a bit 

matrix or as a list. 

Since region labels propagate from point to point, 

we must also keep the labels of those points in the preceding 

row that are neighbors of unexamined points in the current 

row, with the labels of those examined points in the current 

row.      The amount of storage necessary for labels of 

points is thus only a single row. 

The label assigned to a component should designate 

whether the component is above or below threshold.  If the 

background is not partitioned into regions (i.e., is ignored) 

by the algorithm then the data structure becomes simply a 
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list of above-threshold regions.  This is suitable for many 

applications, e.g., infrared target cueing.  In general, 

though, the containment relation defines a tree structure. 

It is evident that if two components of a binary image are 

adjacent then one encloses the other.  However, if more than 

one object-background transition has been detected, one 

cannot know which encloses which from strictly local informa- 

tion at the time of initial label assignment.  The determining 

condition is "which region terminates first?"  The region 

terminating first is enclosed by the adjacent region.  Thus 

whenever a region terminates, the data structure is updated 

to reflect the containment relation.  When a region is 

initiated it is entered onto a "active" list — the list of 

unterminated regions.  At the end of each row, the active 

list is compared with the list of component labels of the 

current label row.  Any active component whose label does not 

appear in the current label row is known to have terminated. 

Additionally, when overlapping regions are combined, the 

discarded label is deleted from the active list. 

It is possible to modify the above to create a des- 

cription of each connected component's boundaries.  Such a 

description is called a "chain encoding" and is discussed 

in [20]. 
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3.6.3  Fuzzy thinning 

Objects which are everywhere elongated are often 

thinned dov/n to a "medial line" for the purpose of extracting 

thickness-invariant topological features of the objects.  The 

basic strategy for thinning is to iteratively delete border 

points (but not end points) of an object which do not locally 

disconnect it.  For binary images, various parallel algorithms 

exist.  The recent extension of the topological concept of 

connectedness to fuzzy subsets allows us to generalize thinning 

to gray level images [21].    Given  thin dark objects on a 

light background,  we define gray level thinning to be the 

successive replacement of points by the minimum gray level 

of their neighbors if those changes do not affect the local 

^uzzy connectedness for any pair of neighbors.  The result 

of applying such an algorithm is a set of high gray level 

"curves" lying on the ridges and peaks of high gray level 

in the original picture.  If the original picture is noisy 

there will be many local peaks; so while thinning is defined 

for unsegmented pictures, a local threshold is necessary to 

overlook these small noise peaks.  Unlike binary thinning, 

however, we no longer need to distinguish between border and 

interior points since thinning a homogeneous region will not 

significantly change the gray level of any point; only a 

slight smoothing results.  The results of experiments with 

this technique are described in a technical report [22] . 

See Figure 3.6.4 for examples of this process. 
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a. 

b. 

Figure 3.6.4a. 

b. 

Iterations 0-3 of fuzzy thinning 
on LANDSAT window of Monterey. 
Iterations 0-5 of fuzzy thinning 
on the output of an edge detect- 
or. 
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3.7  Superslice 

The object extraction task is somewhat simpler for 

FLIR imagery than for visible-light imagery since the objects 

of interest (military vehicles) are generally compact regions 

of (more or less) uniform thermal intensity.  For this 

reason, thresholding has been chosen as an appropriate 

method of segmenting the scene.  However, one can criticize 

threshold selection schemes on a number of grounds.  First 

of all, if a window contains no object then thresholding it 

is dangerous, since above-threshold noise regions may often 

produce probable looking "objects."  Secondly, if more than 

one object is present in the window then a single threshold 

will not suffice.  Thirdly, if an object overlaps several 

windows then there may be no consistent representation of 

an object (i.e., no representation using a single threshold). 

Attempts to divide the scene up into overlapping windows, 

so that objects of maximal size are guaranteed to lie com- 

pletely within a single window, answer this last objection 

at the cost of greatly increased overhead.  In any case, the 

size of the smallest thresholdable region — as well as the 

particular threshold chosen — depends on the window size, 

the coarseness of the grid, and the type of statistical test 

used to determine if a region is thresholdable.  One would 

prefer, however, to be able to extract a small region regard- 

less of the clutter and noise beyond its borders. 
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Another objection to pure thresholding is the presence 

of noise regions in addition to object regions.  Noise regions 

may be difficult to distinguish when based on size, shape 

or gray level features.  The broader and higher the valleys 

of the gray level histogram, the more likely that the noise 

regions will be extensive and numerous. 

A final objection concerns the design of optimal 

thresholding techniques in which the optimality is based on 

a statistical model of the gray level population.  In situa- 

tions where an object contrasts strongly with the background, 

there may be a number of thresholds at which the object appears 

well defined.  As the threshold decreases through this accept- 

able range, each object exemplar is contained within a 

slightly larger one.  Thus although the exemplars may each 

look reasonable, the optimality criterion for the thresholding 

does not necessarily choose a "best" exemplar.  This is be- 

cause the optimality condition was based on the whole window 

rather than on the component corresponding to the object. 

For these reasons, a segmentation method which does 

not require a commitment to a single threshold in arbitrarily 

chosen regions of an image is preferable.  Our method uses 

thresholding as a means of discovering candidate object 

regions.  Candidates are then accepted or rejected based on 

the coincidence of an edge map with the region boundary. 

The surviving object regions are compared with the survivors 

of other  thresholds, and     those that best match the 
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edge map are used to describe the actual objects in the 

image.  Thus, while a number of thresholds are used, only 

the one defining the greatest coincidence of thresholded 

region border and (thinned) edge is deemed valid for a 

particular region.  This method can be considered as defining 

a best exemplar for each object region. 
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3.7.1 Algorithm 

The algorithm consists of several steps as follows: 

median filtering; extraction of an edge mask by edge detection 

and thinning; thresholding; forming connected components; and 

object validity checking.  For a given picture, smoothing and 

edge map extraction need to done only once; whereas thres- 

holding and the subsequent steps are to be performed over 

a range of threshold sufficient to extract any objects in 

the picture. 

Figure 3.7.1 illustrates the basic concepts involved. 

Figure 3.7.1a shows several object windows along with a number 

of possible thresholds for each.  Note that it is not at all 

obvious which threshold is best.  However, when the edge map 

(Figure 3.7.1b) is overlaid on the thresholded picture 

(Figure 3.7.1c), we have much better guidance.  Figure 3.7.Id 

shows the object region extracted from each window using the 

method to be described. 

A number of steps of the Superslice algorithm have 

been discussed in previous sections:  smoothing (Section 3.3.3), 

edge detection and thinning (Section 3.4.2), threshold 

selection (Section 3.5.1) and connected component extraction 

(Section 3.6.2).  However, several problems associated with 

threshold selection deserve mention: 

a)  The omission of a threshold from consideration 

increases the probability of missing extractable 

regions. 
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Figure 3.7.1a, Four target windows (large tank, 
small tank, truck, APC) thresholded 
at seven different gray levels. 
Edge maps (thresholded for visibility) 
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Figure 3.7.1c. 

d. 

Edge maps from (b) overlaid on 
(a). 
Object regions extracted by the 
Superslice algorithm. 
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b) The greater the number of thresholds considered, 

the greater the false alarm rate. 

c) The speed of the algorithm is approximately linear 

in the number of thresholds used. 

The probability of missing a object region due to the omission 

of a single threshold is the product of the probability that 

the scene contains an object region and the probability that 

the object region is discernible (by the algorithm) at 

exactly the omitted threshold.  Although knowledge of the a 

priori probability is dependent on a model for the scene 

(which does not at present exist), experiments have demon- 

strated that an object region which is discernible at all 

by the algorithm can be extracted over a range of thresholds — 

dependent, of course, on the steepness and homogeneity of the 

edge region bordering the object.  Noise regions, on the other 

hand, do not tend to persist over a range of gray level thresh- 

olds.   This tradeoff may therefore be posed as follows:  By 

sampling at every kth gray level, we reduce the workload to 

a fraction (1/k) without appreciably increasing the false 

dismissal rate; however, we lose some redundancy in the 

extracted data which would help us discriminate object regions 

from false alarms. 

The false alarm rate is a function of input window size, 
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as well as a function of the number of thresholds and the 

positions of the thresholds in the overall gray level his- 

togram.  Certain thresholds are worse than others in producing 

false alarms — specifically, those at or adjacent to peaks 

in the histogram. 

After thresholding and connected component extraction, 

each component must be validated as to whether the extracted 

region really corresponds to an object in the scene.  If one 

considers validity checking to be a classification process, 

then one can compute a large number of potential features 

and, using standard techniques,  determine  a discriminant 

function.  We have established three heuristics to be of 

value.  One is that objects should be "well-defined," i.e., 

have discernible borders.  Note that not all real-world 

regions satisfy this constraint.  For example, in LANDSAT 

scenes, forests, urban areas and clouds can blend into 

their surrounds with no discernible edge.  The second heuristic 

is that an object's interior should "contrast" with its 

surround.  In this study, contrast is based on gray level 

difference.  However, other local features including texture 

measures are worth considering as defining object interior. 

The third is that the region size lie within an acceptable 

range.  The size test is applied first, eliminating any 

region with fewer than 20 or more than 1,000 points. 

"Well definedness" of a region is measured by the 

percentage of border points which correspond spatially to 
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(match) actual edge points in the edge map.  "Contrast" 

is  measured by the absolute difference of average gray 

level between the border region of the component and its 

interior.  Figure 3.7.2 shows a scatter plot of these two 

features for the regions extracted from a set of windows. 

A reasonable discriminant based on these two features 

appears to be:  match > .5 and contrast > .6 -- i.e., at 

least 50% of the border matches the edge map, and the con- 

trast is at least .6 gray levels (out of 64).  Note that 

neither feature is by itself reliable enough to discriminate 

noise regions from object regions.  Optimal discriminants 

may be computed based on several models.  Regardless of the 

particular model chosen, the discriminant value can be inter- 

preted as a "score" for the component.  Components with very 

low scores are discarded as pure noise.  In practice, we have 

used the match measure as a score for objects which were 

above the pure noise threshold. 

The score is important in comparing (nested) object 

regions corresponding to the same object.  When an object 

is thresholdable at gray levels t, > t2 >...> t,, this gives 

rise to k connected components, C   <- C   £...*- C  .  Since 
rl    t2       *k 

each C  represents the same object, we call each an "exemplar." 

In general, we wish to select a single exemplar as the best 

representative of an object.  The score provides a criterion 

for selecting among exemplars.  Thus, one could choose the 
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Figure   3.7.2. Scatter diagram plotting 
well-definedness against 
contrast for a set of noise 
regions (plotted as periods) 
and object regions (plotted 
as hash marks). 
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exemplar C  with the highest score.  It is not always easy, 
j 

however, to determine the nested sequence (C  }.  In parti- 

cular, if one object thresholdable at gray level t is contained 

within another thresholdable at gray level t' < t, then 

regardless of the comparative difference between the two 

scores, we would want to retain C  and C.,.  This situation 

can be handled by assuming that nested components whose areas 

are sufficiently different (say, 50% change in size) corres- 

pond to different (although nested) objects.  In thermal 

images, this might correspond to a warm vehicle with a hot 

engine compartment, or to a vehicle on an asphalt road. 

The results of applying the algorithm to a set of 16 APC 

windows   are illustrated in Figure 3.7.3.  Note that in almost 

all cases (the negative image was not processed), the re- 

sulting labelled images contain the target regions (as well 

as other regions). 

In summary, the algorithm for region extraction con- 

sists of the following steps: 

1. Smooth the image, if necessary (to promote clean 

thresholding). 

2. Extract a thinned edge picture. 

3. Determine a gray level range for thresholding. 

4. For each gray level in the range: 

a. Threshold the smoothed image. 

b. Label all connected regions of above-threshold 

points. 
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Figure 3.7.3a. 
b. 
c. 

Sixteen APC windows. 
Edge maps (thresholded for visibility) 
Object regions extracted by the 
Superslice algorithm. 
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c.  For each connected region: 

i.  Compute the percentage of border points 

which coincide with significant thinned 

edge points, 

ii.  Compute the contrast of the region with the 

background. 

iii.  Classify the region as object/non-object 

based on the size, edge match and contrast. 

5. Construct the canonical tree for the set of object 

regions based on containment. 

6. Prune the containment tree by eliminating adjacent 

nodes which are too similar. 
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3.7.2 Conformity - a measure of region definedness 

The Superslice algorithm relies on the heuristic 

that thresholded object regions are distinct from background 

because they contrast with their surround at a well-defined 

border.  The coincidence of high contrast and high edge value 

at the border of a thresholded region is an example of the 

use of convergent evidence supporting the assertion of the 

object region.  The definedness of the border may be evaluated 

as the percentage of the border points which coincided with 

the location of thinned edge (locally maximum edge response). 

Thus a match score of 50% means that half the border points 

are accounted for as being on the edge.  However, it does 

not mean that the matched points adequately represent the 

object.  Figure 3.7.4 illustrates two cases of 50% match. 

(Matched points are indicated by thick strokes.)  Clearly, 

the second case is a better representation than the first. 

The traversal of the border of a thresholded region 

induces an ordering on the matched points.  Let r..,...,r 

be the runs of matched points encountered during a border 

traversal.  By connecting the proximal ends of runs along 

the traversal, one creates a polygonal approximation to the 

thresholded region.  We define "conformity" as the measure 

of match of the polygonal approximation to the thresholded 

region.  High conformity means that the region is well- 

represented by its approximation regardless of the actual 

percentage of matched border points.  Figure 3.7.4a illustrates 
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low conformity; while Figure 3.7.4b shows good conformity. 

Conformity is evaluated as the ratio of the absolute 

difference in area (between the two polygonal representations) 

to the area of the threshold region.  Experiments have in- 

dicated its utility as a feature for discriminating noise from 

objects.  A quantitative study of its discrimination value 

is described in Section 3.9.4.2. 

( j 

a. b. 

Figure 3.7.4a.  Contour whose matched edge points 
(thickened strokes) exhibit poor 
conformity. 

b.  Contour showing good conformity. 
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3.7.3  Hyperslice - An algorithm for recursive region 

extraction 

The algorithm (Hyperslice) described here is an amalgam 

embodying the recursive control structure of Ohlander [3] 

and the object extraction techniques of Superslice.  Hyper- 

slice consists of the following steps [24]: 

1. Preprocessing - image smoothing, thinned edge 

map extraction. 

2. Initialize the extracted region mask (ERM) to the 

empty mask. Initialize the available points mask 

(APM) to the entire image. 

3. Compute histograms for all feature images based 

on the APM. 

4. Determine a "best" slice range over all current 

histograms and slice the corresponding image. 

5. Generate submasks for regions satisfying the Super- 

slice criteria.  Add them to the ERM; delete them 

from the APM. 

6. Apply algorithm steps 3-5 recursively to the back- 

ground set (APM).  The algorithm should also be 

applied recursively to each submask added to the 

ERM, since the extracted region may be a union 

of regions discriminable by some other feature. 

Several comments are in order.  First, the slice 

ranges chosen for Hyperslice should be rather liberal (i.e., 

extending beyond valley bottoms in the histogram), since 
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points not corresponding to well-defined regions will be 

returned to the APM.  The resulting histograms appear more 

natural (not "carved-out") for this reason.  Secondly, the 

resulting decomposition is order-dependent, i.e., different 

results may be obtained if the order of selection of slice 

ranges is changed.  If two adjacent regions in the image 

contribute adjacent peaks in the histogram, then points in 

the intersection of the overlapping slice ranges will gener- 

ally belong to the shared edge region.  Whichever region is 

sliced first will tend to accrete more of these points. 

Since these points lie at or near the true edge, they tend 

to increase the edge match criterion for that region.  Once 

they are removed from the APM, they are not available to the 

adjacent region.  Consequently, the edge match criterion of 

the adjacent region may suffer.  This is most likely to occur 

for adjacent regions which lack a strong common border.  The 

2-dimensional histogram approach in [16] can detect adjacency 

along weak borders.  In practice, the edge match criterion 

is relaxed somewhat from demanding actual coincidence to 

allowing proximity (e.g., a region border point adjacent to 

a thinned edge point is counted as a match). 

The algorithm has been implemented as an interactive 

system of programs.  Several examples illustrate its ability 

to segment images based on gray level alone (i.e., no other 

features were used to aid the segmentation).  Figure 3.7.5 

depicts a window of an ERTS frame of the Monterey area in 
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California.  The water area contrasts sharply with the land 

and very little noise is extracted and subsequently returned 

to the APM.  The subsequent slices extract light and dark 

fields which contrast with the undifferentiated background 

region. 

The second example is derived from Ohlander's house 

scene.  The average of the three color bands provides the 

gray-scale.  The resulting image has been smoothed by 3x3 

median filtering.  The first slice range extracts the sky 

regions and the bright crown of a bush.  Next the shadow 

regions appear along with the bushes.  The somewhat darker 

grass is extracted in the third slice range.  Finally, the 

brick is extracted.  Figure 3.7.6 illustrates this sequence. 

Images such as the Monterey and house images are 

difficult to analyze since regions need not be well defined 

due to the complexity of light reflections and shadows. 

Nonetheless, this algorithm provides a mechanism for retrieving 

those regions which are well-defined. 
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b. 

c. d. e. 

Figure 3.7.5. 

a. 
b. 
c. 

d. 

e. 

Recursive region extraction on 
Monterey image. 

LANDSAT window. 
Edge map. 
Histogram of (a), with selected slice 
range indicated. 
Mask of slice range.  Within range 
points are white. 
Extracted regions mask. 
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^ 

f. h. 

4? 3 

i. 

1. m. 

Figure 3.7.5 (continued) 

f. Histogram of remaining points after 
deleting extracted regions of (e). 

g. Slice range mask. 
h. Extracted regions mask. 
i. Histogram of remaining points. 
j. Slice range mask. 
k. Extracted regions mask. 
1. Histogram of remaining points. 
m. Mask of remaining points. 
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a. 

c. e. 

f. h. 

Figure 3.7.6 

a. 
b. 

c,f,i,l,o. 

d,g,j,m. 
e,h,k,n. 

P« 

Recursive region extraction on house 
image. 

House window. 
Edge map. 

Histograms after successive deletion 
of extracted regions.  New slice ranges 
are indicated. 
Slice range masks. 
Extracted region masks. 
Mask of remaining points. 
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1. j. 

1. m. n. 

o. 

Figure 3.7.6 (continued) 
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3.8   Feature extraction 

3.8.1   Feature design 

In this section, as in most work dealing with pattern 

classification,a "feature" is taken to be some numerical 

quantity which can be calculated for each object 

to be classified. ("Shape" is not a feature, since many 

features, such as height/width,  measure characteristics of 

the shape.)  To be consistent with a high processing rate 

throughout, all features used in this study are based on 

accumulatable quantities.  That is, a number of crude 

features have been chosen (listed in Table 3.8.1a ) which are 

defined at each pixel.  The value of any of these features 

for a region is just the sum of the values over all the pixels 

of the region.  These crude features can be accumulated as 

the image is being segmented, and are therefore immediately 

available for any region as soon as it has been completely 

extracted.  The descriptive features actually used are simple 

functions of these accumulatable quantities, so that once 

any region has been extracted, brief calculations produce 

all the information required for classification of that 

region, with no further reference to the original image. 

One additional feature, "conformity," has been obtained for 

many of the images.  This feature requires rather more post- 

processing after region extraction, and is included as a 

nearly optimum measure of one region characteristic which 

should be of importance in target detection:  cooccurrence 
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a. Accumulatable features per connected component 

Symbol Meaning 

1.   N Area 

2-3.  SX,SY IX,T.Y  - first moments 

4-6.  SX2,SY2#SXY        IX2,ZY2,IXY - second moments 

Perimeter point count 

High edge point count 

Total edge value on the perimeter 

Total interior gray value 

Total perimeter gray value 

Total gray level, total squared 
gray level 

b. Intermediate quantities     

1. XAVE 4*^ 

2. YAVE 4*717 
2 2 2 3. RZ SX     +   SYZ 

4. V SG2/N   -    (SG)2/N2 

7. P 

8. E 

9. SPE 

10. SIG 

11. SPG 

12-13. SG,SG2 

Table 3.8.1.  Features. 
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c.  Recognition features 

1. h/w 

2. (h/w)' 

3. (h*w)/A 

4. (h+w)/P 

5. diff 

6. skewness 

7. asymmetry 

8. SDEV 

9. Gray level 
difference 

10. E & P 

YAVE/XAVE 

|XAVE~'8*YAVE 

XAVE*YAVE/N 

l/-/x AVE*YAVE 

(XAVE+YAVE"4)/P 

2   ?   ? 
(SX -SYZ)/RZ 

| SXY|/R2 

2   2  2   4 
((SXY) -SXZSY )/R 

>shape 

/v 

11. 
%> 

SIG/(N-P) - SPG/P 

(Number of perimeter points 
at hign edge local maxima)/? 

SPE/P 

ybrightness 

d.  Special features 

1.  conformity (See Section 3.7.2) 
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of the region perimeter and points of high brightness gradient. 

This gives a useful standard for measuring the adequacy of the 

rapidly calculated feature (E&P, in Table 3.8.1c ) which is 

used as a measure of the same property. 

A decision rule is effectively a mapping from the 

feature space to a lower-dimensional space (the decision 

space) in which each point is associated with a fixed class. 

While this structure is very general, commonly used decision 

rules are very severe specializations of this general scheme. 

Usually the initial mapping is produced by a set of poly- 

nomial functions on the features, one function for each 

dimension of the decision space.  Within this space, the 

class regions are usually separated by planar boundaries. 

Thus, the Fisher method utilizes a single linear mapping 

onto the line, which is bisected by a point (at the Fisher 

"threshold") to establish the two class domains.  Speciali- 

zation of decision rules places sharp restrictions on what 

constitutes an appropriate feature. 

To discriminate tanks from trucks, a naive observer 

might point out that one need only examine the shapes.  One 

more familiar with computational measures would recognize 

that the shape of an object involves a great many features, 

but might suggest that the height-to-width ratio would be 

one useful feature.  However, height-to-width, width-to- 

height, log(height-to-width), etc. are all quite distinct 

features, one of which may be highly effective in the desired 
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decision while others may be totally useless.  Useful features 

must thus satisfy a number of conditions, some of which are 

general, the others being imposed when particular simple 

decision rules are to be applied.  The present classification 

study has considered linear and quadratic classifiers, a 

decision space with no more dimensions that the number of 

classes, and simple boundaries for each class within the 

decision space.  Several levels of restriction on the features 

to be used with such a classifier can be stated: 

1. Each feature must exhibit a different distribution 

for each of at least two classes. 

2. The classes should tend to fall in different value 

ranges for each feature, since class assignments 

in the decision space will be to connected regions. 

3. When the classifier utilizes sample means and 

variances to estimate parameters for the mapping 

(as those used here do), the true feature distri- 

butions of each class should be unimodal, approxi- 

mately symmetric about the mode, and with a 

minority of points contained in the wings of the 

distribution. 

4. For use with linear classifiers, each feature 

should have a distinctly different mean for at 

least two classes.  For use with quadratic 

classifiers, it is only necessary that some range 

of values tend to characterize one class, while 
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the other class predominates on the complement. 

Despite these "rules" for good features, it should 

be noted that for a multi-feature decision scheme, none of 

these rules is essential.  However, only when some of the 

features are very strongly correlated can the above princi- 

ples be violated without destroying the classification, and 

while this situation is not necessarily to be avoided, it 

makes interpretation of decision rules much more difficult. 

Moreover, as a practical matter, features which fail to 

have the above properties normally turn out to be ineffective 

(or worse, countereffective) when employed in automatic 

classification.  Since one is not really restricted in the 

particular form of the features to be used (but only in the 

underlying characteristic being represented) one may as well 

assure that the features being considered are, as far as 

possible, individually effective means of class discrimination. 

Finally, one more restriction should be stated. 

5. The features should not reflect characteristics 

which effectively delineate the sample classes, 

rather than the true classes. 

This, of course, is the familiar failing of "small" 

samples, but may appear even in apparently large enough samples. 

In our data base (Section 3.9.1), several such "extraneous 

differentiations" did arise.  In cases where a large number 

of features are employed in a classifier, there must always 

be doubt about whether condition 5 will hold.  It is this 
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condition, more than any other, which restrains the number 

of features which can usefully be included in a classifier. 

If an arbitrarily large number of features are measured for 

a particular set of classified samples, it is virtually 

certain that spurious characteristics will allow them to be 

well separated by a decision function based on those features, 

but there is no reason to expect anything other than random 

classification of new samples.  The problem is sufficiently 

pervasive that a simple means of dealing with it could 

almost be elevated to a principle: 

5'. Features should be included in a classifier only 

if they identify true differences between the classes 

more than they do spurious differences between 

the samples. 

While the above rule may seem obvious, it is important 

to realize that including additional features that do not 

discriminate between classes makes the classifier worse, as 

the features may very well distinguish the class samples, 

even though they do not distinguish the classes.  (Self- 

classification of the training set improves, while classifi- 

cation of independent test sets degrades.)  Class differences 

must be effectively reflected in the feature to make it safe 

to use.  "Height-to-width" ratio is a dangerous feature to 

include in a linear classifier for target vs non-target since 

its mean values for target and non-target classes may not be 

greatly different (though the distributions may differ greatly), 
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so that small spurious differences in sample means may 

produce most of the "strength" of the feature.  In a quadratic 

classifier, however, the problem would be much less severe, 

since the discrimination provided by the feature more nearly 

matches the requirements of the decision function employed. 
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3.8.2  Computation 

The principal attributes of image regions which can 

be used to identify them are shape and relative brightness. 

Corresponding locally accumulatable properties are pixel 

coordinates, and functions of them, and gray level, and 

functions of it.  Additional information can be obtained 

from the contrast between the region and its surround at 

the region boundary.  One can know as one examines each image 

point whether it is in the interior of a region, on the 

region boundary, or in the background.  Statistics of inter- 

est can therefore be accumulated separately for these classes, 

Finally, the pre-computed edge value (gray-level gradient) 

is associated with each point, and these values may be 

accumulated or may be used to index subsets of points (e.g., 

"high edge" points) for which other quantities may be 

accumulated separately.  The accumulated features actually 

used are all of one or the other of the above types, and 

were listed in Table 3.8.1a. 

The features calculated for use in classification 

studies are given as Table 3.8.1c-d. They are further divided 

into two groups — those that are purely shape measures, and 

those that depend in some way on the brightness of the region 

(or some part of it).  Many of the functions appear to be 

straightforward measures of significant characteristics, but 

others seem less straightforward.  The criteria for choosing 

the specific functional forms used are discussed in Section 
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3.9.4.  A discussion of the relative utility of the features 

appears in that same section. 
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3.9   Region Classification and Experimental Results 

3.9.1  Data base description 

For a description of the complete "NVL" data base 

and its ground truth see [1].  From it a set of 174 128x128 

windows were selected, extracted, requantized, median filtered 

and sampled 2 to 1.  The set consists of 164 target windows 

(75 tanks, 34 trucks, 55 APC's) and 10 non-target (noise) 

windows.  Figure 3.9.1 displays this set of windows and 

their identifiers. 
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IT 2T 3T 4T 

6T 8T 9T 10T 

11T 12T 13T 14T 

15T 16T 17T 21T 

22T 24T 26T 28T 

31T 32T 33T 34T 

35T 38T 40T 42T 

43T 45T 46T 48T 

50T 5 IT 52T 53T 

54T 55T 56T 57T 

58T 59T 61T 62T 

63T 64T 65T 66T 

Figure 3.9.1, NVL data base consisting of 164 
target windows and 10 non-target 
windows. 

75 tanks. 
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68T 69T 

75T 76T 

80T   89T 

73T 74T 

78T 79T 

92T   95T 

99T  105T  109T  HOT 

114T 122T 123T 124T 

125T 126T 127T 128T 

129T  130T  131T 

Figure 3.9.1 (continued) 
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3R 4R 6R 9R 

18R 22R 24R 26R 

31R 32R 33R 34R 

35R 41R 47R 51R 

Mnm 

52R 53R 54R 55R 

56R 57R 58R 59R 

71R 72R 77R lOOR 

104R 109R 132R 133R 

134R  135R 

Figure 3.9.1 (continued) 

b. 34 trucks. 
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21A 22A 24A 27A 

28A 32A 33A 34A 

35A 37A 38A 4 2A 

44A 45A 46A 4 8A 

50A 51A 52A 5 3A 

54A 55A 56A 57A 

58A 59A 61A 73A 

74A 75A 76A 7 8A 

79A 80A 86A 90A 

91A 93A 94A 96A 

97A 98A 101A 102A 

111A 112A 113A 114A 

Figure 3.9.1 (continued) 

c. 55 APC's. 
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115A  122A  123A  125A 

127A  129A  130A 

c.  APC's (continued). 

2N 8N 14N 20N 

26N 32N 38N 44N 

50N 56N 

d.  10 non-target windows. 

Figure 3.9.1 (continued) 
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3.9.2  Overview of classification 

There are two general approaches to classification 

of objects into a preassigned set of mutually exclusive 

categories.  The first might be called "semantic" classifi- 

cation.  Each category is examined for particular character- 

istics which distinguish its members from those of every 

other category being considered.  These characteristics are 

used to identify each object submitted for classification. 

(Difficulties, of course, occur if an object has none of the 

"key" characteristics, or has "key" characteristics suggest- 

ing more than one classification.  Such an occurrence in- 

dicates that the classes suggested simply do not include 

everything within the domain of interest, or are not truly 

mutually exclusive — at least as defined by the set of "key" 

features.) This is a form of classification which is ubiquitous 

in human experience.  Unfortunately, in many cases of practi- 

cal importance, the objects to be classified cannot be 

characterized by properties which will always be observed 

within one class, and never in any other class.  If the 

classes really are well-defined, this difficulty may arise 

because of the need to classify using noisy or poorly re- 

solved data.  It may also occur because characteristics 

quite plain to human observers may defy expression as cal- 

culatable quantities (one vehicle may be "sleek and speedy 

looking", another "squat and out-of-date").  For whatever 

reason, when such incompletely characterized problems arise , 
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a method is required which provides a computable "best guess" 

classification.  All such methods accept a number of (usually 

numerical) features which are assumed to be relevant to the 

classification intended.  The distribution of these features 

for a large number of objects whose identity is already known 

is then used to provide a rule which assigns a class to an 

object given the n-tuple of features measured for that object. 

Typical rules of this sort are simple polynomials over the 

features, whose values are used to determine the class 

assignments. 

"Statistical" classification finds the best rule for 

a fixed class under some (usually very restrictive) assump- 

tions about the way the features ought to be distributed. 

Since the data available in this study appear not to provide 

enough resolution to produce a semantic classification, we 

have utilized a procedure which includes a statistical 

classification component.  A completely statistical classifier 

was not used, however.  The full procedure consists of a 

semantic pre-classification of regions which could not 

represent targets, followed by a statistical classification 

of the "reasonable" regions.  This approach was chosen pri- 

marily to ensure greater robustness in the resulting classi- 

fication scheme, as will be discussed more fully below. 

Finally, it is important to analyze the types of 

errors made by a classifier.  For example, a well-behaved 

classifier should be wrong more often on distorted images 
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than on undistorted ones.  This type of performance may be 

tested by training a classifier of the same type on a 

"training set" of half the samples, distributed evenly 

through the classes.  The resultant classifier can then be 

used to reclassify the whole data set.  If the "training" 

and "test" results are similar, then the classifier is 

judged fairly stable.  If the results are good, then the 

classifier can be considered fairly powerful. 

It is important to distinguish between human interaction 

in classifier design and human interaction in the operation 

of the classifier.  The former is permissible since the 

classifier is fixed once it has been effectively designed 

and trained.  No further human assistance is allowed and 

the classifier is applied in an automatic fashion to the 

test set. 
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3.9.3  Detailed classification description 

The objects to be classified in this study are con- 

nected regions of an input picture, extracted by thresholding 

the image.  More than one threshold may have been used on 

any given picture, so the regions need not be disjoint; rather 

one may be entirely contained in another.  For each region, 

a feature vector containing information about shape and 

brightness (as described in Section 3.8) is used as the sole 

source of information about the region for classification. 

The extraction procedure has somewhat preselected these 

regions, so that every region examined has at least minimal 

(20%) correspondence between its perimeter and the high- 

edge points, has at least minimal contrast (.2 gray level), 

and is of roughly appropriate size (between 20 and 1000 

pixels). 

3-113 



3.9.3.1  Stage 1; pre-classification 

If the classification is thought of as a two- 

stage process  (shown schematically as Figure  3.9.2), the 

first stage is a crude "semantic" classifier which identifies 

some regions as having properties which indicate that they 

are not targets.  Thus, all targets have similar height and 

width, seen at any aspect angle.  Any region with h/w 

greater than 3 or less than 1/3, then, may be confidently 

rejected from further consideration.  Similarly, targets 

"should" show some minimal contrast at their perimeters, a 

good edge-perimeter overlap, and small targets should be of 

nearly uniform brightness.  All these criteria are set by 

establishing numerical thresholds such that at least 95% 

of the sample targets satisfy the criteria. 

This is called "semantic" classification, 

rather than a very crude statistical classification, because 

the particular criteria used have been chosen to distinguish 

the targets on the basis of physical characteristics of 

true target images.  A statistical classifier, even if it 

arrived at the same scheme, would be assessing discriminatory 

ability on the sample of classified regions provided for 

training, and could reflect any peculiarities which happened 

to distinguish the categories in that sample.  (In the NVL 

data, APC's often exhibit an asymmetry which is due to the 

fact that most of those in the sample appear in only a 

single aspect.  An apparently good statistical classifier 
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Image 

Thresholding 
and connected 

component 
labelling 

Image regions 

Candidate 
object —. 
regions 

Stage 1 

Candidate 
target  
regions 

Stage 2 

Superslice 

Semantic 
pre-classifier 

Statistical 
classifier 

-»Noise  regions 

-•Non-targets 

-•Non-targets 

Targets 

i i        I       i 
Small   Tanks  Trucks APC's 
targets 

Figure 3.9.2a.  The classification process. 
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Candidate 
object regions" 

Features:  al, a2, a3, c2, 
^    c3, c8, clO, ell 

Candidate 
■* target regions 

Non-targets 

Figure 3.9.2b.  Stage 1 - the pre-classifier 
(for feature list, see 
Table 3.8.1). 
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Candidate 
Target Regions (OBJ) 

Size 
Discrimination | 

(Small) 

Features:  c3, 
c4, c5, c7, clO 

Noise Small 
targets 

(Large) 

Features: 
clO, ell 

c2, c3, c5, c6 

(Truck-like) 

Non-targets  Tanks Features:  c3, c4 , 
c6, c7, clO 

Trucks APC's 

Figure 3.9.2c.  Stage 2 - the classifier 
(for feature list, see 
Table 3.8.1). 
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could be formed which would unhesitatingly identify any APC 

in some other aspect as a tank.) 

This pre-classification examines individual 

features to determine whether they could be reasonably 

associated with true targets, and discards "ridiculous" 

cases.  A side-effect of this sorting is to assure that 

feature values seen by the subsequent statistical classifier 

are never very far from their characteristic values.  This 

makes the classifier much better-behaved than one which 

accepts non-normally distributed features (as most do) that 

have not been "critiqued." 
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3.9.3.2  Stage 2: statistical classification 

Once the set of extracted regions has been 

reduced to a set of bright, compact, reasonably uniform 

regions, statistical classification is used to assign a class 

to each particular combination of features (or rather, to 

its associated region).  A great many kinds of statistical 

decision rules exist.  Access to the MIPACS [25] interactive 

system allowed us to design a decision tree (each node of 

which is a standard classifier) for efficient classification. 

The system allows individual decision functions to be either 

linear (e.g., Fisher),   quadratic or maximum 

likelihood,   and provided a convenient mechanism for selecting 

which decisions to make, and just which features to use at 

each decision point. 

The basic structure selected was shown in 

Figure  3.9.2c. The first node actually represents a  non- 

statistical selection.  Because of the wide range of apparent 

sizes of the target images (from 25 to 1000 pixels) and the 

consequent wide range in visible complexity of detail, it 

was quickly determined that statistical classifiers would 

not provide good discrimination over the entire size range. 

(Almost every feature measured showed substantial correlation 

with apparent size, and since the various sample classes 

happened to have rather different image size distributions, 

our earliest classifiers used that factor as a main classi- 

fication indicator.)  Therefore, the first step in the 
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classification is a simple split on image area — with all re- 

gions  of less than 95 pixels going to the "small" subtree, 

and the remainder passing into the "large" subtrees.  For 

several reasons, principally a presumed lesser urgency for 

detailed identification of small or distant objects and the 

fact that in the smallest images no significant differences 

between the various target classes are apparent, the small 

regions are simply sent to a node which classifies them as 

(small) "target" or "non-target" — the specific type of 

target is left unspecified.  For the large regions, a two- 

stage process followed.  As neither APC's nor  trucks are 

particularly well characterized by the features used and 

their distributions are very similar, they were merged into 

a composite "truck-like" class.  Any region found to be in 

this class is then assigned as APC or truck by a Fisher 

discriminant.  (A major reason for this breakdown is that 

it permits fairly large samples to be used at an important 

decision point and relegates use of the sparsely sampled 

truck class to a relatively inconsequential discrimination.) 

The principal decision was therefore between the "tank" and 

"truck-like" classes and the "non-target" class.  Two 

different approaches were tried for making this decision, 

both based on a quadratic maximum-likelihood discriminant. 

These are described more fully in Section 3.9.4.  One 

approach ("fixed classes") applied the maximum likelihood 

criteria directly to the tank, truck-like, and non-target 
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classes.  The second approach included two "reject" possi- 

bilities as well — non-target, and unclassified target. 

(Notice that the non-target label is applied either if a 

region looks sufficiently like a "typical" non-target or 

if the best label implies too unlikely a value for the 

features measured.)  The latter approach was included to 

further minimize reliance on characterizing non-targets 

in detail. 

Given the tree structure for the classification, 

the kind of classifier  and the set of features at each node 

were determined.  The number of features which can reliably 

be used depends on the size of the sample set used for 

training.  Assuming that the features are chosen so as to 

avoid apparent vagaries  in the set of exemplars, one can 

confidently use an additional feature for each ten samples 

in the smallest group, and sometimes may use up to one-third 

the sample number (for a linear classifier).  As quadratic 

classifiers utilize more detail of the presumed distribution 

one is restricted to the conservative end of that range. 

These rules of thumb, while not universally valid, are non- 

theless useful guides. 

By merging the truck and APC classes, we allow 

comfortable use of a quadratic classifier on five or six 

features at the main decision node, while the smaller samples 

make a linear classifier or a three or four feature quadratic 
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classifier more reasonable at the lower node.  The "small" 

node could utilize five or six features — but one is hard- 

pressed to find even that many which provide any discrimin- 

atory power at all.  (However, one feature, E&P, is very 

powerful indeed.) 
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3.9.4  Experimental results 

3.9.4.1  Feature selection 

As in any classification problem, much of the 

initial feature selection for the vehicle recognition task 

was carried out informally.  This phase is largely intro- 

spective, determining characteristics of the images that 

seem helpful for human judgement, then identifying some 

features that should suitably reflect these characteristics. 

This initial feature set (conveying "shape" and "relative 

brightness") is listed in Table 3.8.1, Section 3.8.  All 

of these features seem appropriate for use with linear or 

quadratic classifiers. 

The features were examined in several ways. 

First, histograms for each feature were produced for every 

sample class. These histograms were examined 

to see whether the sample distributions satisfied the criteria 

noted in the last section.  The differentiation that appeared 

was interpreted as to whether it was a true difference be- 

tween classes, or simply a sampling anomaly.  (At this stage 

too, particular features might be replaced by similar features 

of slightly different functional form, to better satisfy the 

requirements of automatic classification.)  Second, those 

features that seemed to have some merit were ranked for 

classification power at each node of the decision tree. 

The "Automask" method, available within MIPACS, was used 

([25]).    Briefly, Automask finds, for each feature, its 

"share" of the total dispersion both between and within sets, 
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and finds the single feature which produced the greatest 

comparative variance between sets.  This feature is then 

deleted from consideration, and the other features reexamined 

to find the next best feature, and so on.  The relative merits 

of the features for each node are shown below. 

Node 

Small 

Large 

Good features 

E&P 

E&P, diff 

Trucklike    E , asymmetry 

Usable features 

(h/w)',(h*w)/A,(h+w)/Pfdiff, 
skewness, asymmetry 

(h/w)',(h*w)/A,skewness, 
asymmetry, E 

(h/w)',(h+w)/P,skewness,E&P 

Shape features: 

In the first stage, the (h/w)1 height-to-width feature 

was useful in identifying small bright streaks as non-targets. 

In the statistical classifier for small targets, shape features 

were individually very weak in distinguishing targets from 

non-targets.  For large targets, diff was the best shape fea- 

ture at node LARGE; all the others but asymmetry were also of 

some use.  At node TRUCK-LIKE, on the other hand, asymmetry 

was the best shape feature, with the remainder of no value. 

Brightness-related features: 

Edge-border coincidence (E&P) was by far the strongest 

single feature for both nodes involving target/non-target 

discrimination (OBJ  and LARGE).  For small targets, it 

provides nearly all the discrimination in the second stage. 
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For large targets, it provides evidence which is well 

complemented by shape information — both must be included 

for adequate performance.  Also very useful, particularly 

at stage 1, is E , which provides substantially different 

information from E&P.  Gray level variance is used to some 

effect in the first classifier stage, but is not effective 

in the second stage.  Perimeter contrast information appears 

to be much more effectively conveyed through E  than dgl. 

These rankings, while not dependable when taken 

alone, have been very helpful in suggesting which features 

could usefully be included in decisions at each node and 

which should be  omitted.  This was especially helpful in 

the case of the shape features, for which estimates of 

relative merit were not obtainable. 

The final stage of feature testing was experi- 

mental.  Features suggested either by Automask or by the problem 

definition were included in decision functions, and self- 

classification attempted.  In many cases, the results were 

not satisfactory and one or more features were added or 

deleted until "good" results were obtained.  If too many 

features were present in this classifier, features were 

removed until the best classification obtained with an 

acceptable number of features was found. 
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3.9.4.2  Classification 

The NVL data base as windowed for classifi- 

cation purposes consists of: 

75 Tanks 

34 Trucks 

55 APC's 

164 Target windows 

10 Non-target windows 

174 Total windows 

Associated with each window was a liberal 

threshold range extending from the shoulder of the background 

peak gray level to the highest gray level at which there was 

significant sensor response.  Although these ranges were 

manually selected, this is not a significant interference 

with the automatic nature of the algorithm since the gray 

level ranges can be chosen by a simple scheme which identifies 

the background peak and proposes every threshold above the 

peak.  (If a coarse temperature calibration is available, 

this task is even simpler.)  See Section 3.9.4.3 for 

further discussion. 

The Superslice algorithm was run on these 

windows using the selected gray level ranges.  Connected 

components whose contrast, edge-perimeter match score and 

size were within tolerance were retained.  The resulting 

sets of regions are described by the containment forests in 
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Table 3.9.1.   Within each containment tree, Superslice 

selects the best exemplar(s) for the candidate object region 

based on edge match.  Thus, every tree has one or more best 

exemplars associated with it.  All other (non-exemplar) 

regions are suppressed since the algorithm has proposed 

better representatives for classification. 

Each containment tree is manually labelled as 

either "target-related" (containing regions associated with 

the target) or noise (spatially apart from a target region) 

so that false dismissals can be determined. 

Of the 164 target windows, two windows (64T, 

86A) had containment forests with no target-related regions 

present.  At this stage, the false dismissal rate is 2/164 ^ 1% 

for Superslice.  Determination of a false alarm rate is in- 

appropriate since the discrimination performed by Superslice 

is "object vs. non-object," not "target vs. non-target," and 

there is no ground truth for the number of objects (including 

targets, hot rocks, trees, etc.) in the frames. 

The next stage - preclassification - performs 

possible-target vs. non-target screening.  [For the purpose 

of building the screening criteria and subsequent classifier, 

a single exemplar per target was hand-chosen.  No other 

target-related regions were considered; all noise regions, 

however, were retained.]  Of the 162 target windows, the pre- 

classif ier retained 161 for a false dismissal rate of 1%.  In 

addition, 44 noise exemplars also survived as possible targets. 
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Window ~ 

Reference 
Number 

Lowest 
Threshold Containment Forests 

IT 23 X(N,TTT(PPPPPP,PP) ,NNN,N(N,NN) riiN) ;NN 
2T 23 n rp rp rp rp rp rn rp 

3T 25 TTTTTTT(PP,P);NN;NN 
4T 30 rprprprprprp 

6T 25 rprprprprprp 

3T 26 rprprprprp 

9T 24 TTTTTT(P,P) 
10T 25 mmmrnmrp 

11T 25 TTTTTTTT;NN 
12T 22 X(PPPPP(P,P(P,P)),N) 
13T 20 XX(N,TTTT);N 
14T 22 rp rp rp rp m rp rp 

15T 30 rprprprprn 

16T 24 rp rp rp rp rp rp rp 

17T 26 rprprprprp 

21T 26 rp rp rti rn rp 

22T 25 rprprprprprp 

24T 29 rprprprprp 

26T 26 rprprprprp 

28T 27 TTT 
31T 27 TTT 
32T 21 XlTTTT,N,N) 
33T 23 VTTTT;N 
34T 26 TTT 
35T 24 TTTT;N 
38T 24 rnmmrnfnmm 

40T 23 TT;NN;N 
42T 24 TTTTT(P,P(PP,PP)) 

Table 3.9.1.   Containment forests of regions extracted by 
Superslice (Tanks) . "AB" means that region A contains 
region B.  MA(B,C)" means that region A contains the 
disjoint regions 3 and C.  "A;B" means that A and B are 
disjoint regions in the window.  Underlined letters denote 
"best" exemplars of the target region.  Target trees begin 
at lowest threshold. 

Legend:  T target 
P partial target 
X target with additional noise 
0 target invisible in noise 
N noise region 
F fiducial mark 
V target region not present at this threshold 
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43T 26 rnrprprprp 

45T 25 rp on rp rp rp rp 

46T 26 rprprprpipip 

48T 24 rprprprprprprprprp 

50T 22 OTTTT- 

51T 24 rpr.irprpm 

52T 23 rnrprprprp 

53T 23 mmmrrtrp 

54T 23 rprnrnrprn 

55T 23 rnrprprprp 

56T 22 T;N;N 
57T 22 TTT;NN;N 
58T 20 X(NN,NN,TT) 
59T 21 X(TT,NN);N;N 
61T 43 rp rp rp rp rp rp 

62T 24 TTTT;N 
63T 24 TTT; N 
64T 28 FFFFF;W;N        (no   target  re 
65T 46 1 
66T 47 TT 
68T 26 TTTT;N 
69T 26 TTTT;WN 
73T 43 n rp rp rp rp rp rp 

74T 45 rprprprprp 

75T 22 TTTTTT(P(P,P),P) 
76T 23 ni rp rp rp rp rn rp rn rp rp rp rp 

78T 27 TTTTTTTTP,P) 
79T 24 TTT(PPPP,PPP) 
80T 22 TTTT(P,PPPPP(P(P,P) ,PP) ) 
89T 23 rp rprprprprprprprprp 

92T 22 rp rp rp rr\ rp rr% rr\ rp rrt rp rp m 

95T 24 *"P T* *"P *"P *"P T* *"P T* T* *"P 

99T 21 rprprprprpriirprprprprprp 

105T 24 TTTTTTTTTT(P,P,P) 
109T 23 TT(PPPP,PPPPP,P(PPPP, PP) ) 
HOT 24 rp rp rp rp rp n m 

114T 25 rprprprprnrprprprprp 

122T 20 rp rp rp rp r r\ 

123T 22 rpn rp rp rp rp rp 

124T 21 rp rp rp rp rp rp rp ip 

125T 24 rprpmrprp 

126T 23 TTTT 
127T 24 rp rp rp rp rp rp fji fp 

128T 23 rp rp rp rp rp rp rp 

129T 24 rp rp rp rp rp rp rp rp 

130T 25 rntryfT^rprnrn 

131T 26 tT\TT\tTWT\fT} 
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Window 
Reference 
Number 

Lowest 
Threshold 

Containment  Forests 

3R 23 X(TTT,NNN(NNNN,NNNNN));N 
4R 22 TTTTTT;N;N;NNN 
6R 23 OTTTTTT;NN 
9R 23 X(TTTT,N(NN,N),NN,N,N) 

18R 26 VTTT;N 
22R 24 rprprprprprp 

24R 28 X(X7TTT(PP,P),N)) 
26R 27 TTT; N 
31R 26 OTTTT 
32R 21 X(PP,N,N,N);NN 
33R 23 X(X(TTT,N),N 
34R 24 WTTT; N; N; N 
35R 23 TTT;N;N;N 
41R 25 rprprprprprprprprpmm 

47R 25 rp rp rp rp rry rn rp rp rp rp rri 

51R 25 TTT;N;N 
52R 23 TTT 
53R 24 TT 
54R 23 TT;N 
55R 23 VTTT;N;N 
56R 24 TTTTTT;NNN 
57R 24 TTTT7NNN;N;NN 

58R 24 TTTT;NN 
59R 23 TTTT;NN;N;N 
71R 44 mrnrnmrn 

72R 46 TTT;NN;N 
77R 27 TTTTTT(PfP) 

lOOR 23 rp rp rp rp rp rp rp 

104R 27 rp rp rp rp rp rp rp 

109R 27 TTT7P,PPP) 
123R 27 X(TT(P,P)rN) 
133R 27 TTTT 
134R 27 XTTT(P,P) 
135R 26 TTTT 

Table   3.9.1.     Continued.      (Truck  windows) 
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Window 
Reference 
Number 

Lowest 
Threshold 

Containment Forests 

21A 
22A 
24A 
27A 
32A 
33A 
34A 
35A 
37A 
38A 
4 2A 
44A 
45A 
46A 
48A 
50A 
51A 
52A 
53A 
54A 
55A 
56A 
57A 
58A 
59A 
61A 
73A 
74A 
75A 
76A 
78A 
79A 
80A 
86A 
90A 
91A 
9 3A 
94A 
96A 
97A 
98A 

26 TTTTTT 
22 Tr£TTTT 
28 «PTTTT 
27 VTTT;N 
25 TT~ 
25 T;N;N 
26 TTT 
25 TT 
27 TTTTTTTT 
23 TTTTT 
24 TTTT(PP,PP) 
28 TTJpTTTTT 
26 TTTT7N;N 
26 TTTTTT 
26 TTTTTTT 
24 TT~ 
25 TTTT;N;N 
25 TT;N;N 
24 TTT;N;N;NN 
25 TTT 
26 f 
25 TTTT 
24 TTTT 
25 TTTTT 
24 TTTTTTT 
41 TTT|«PTT 
4 3 TTT|TT 
4 3 TTT^TTT 
25 TTTTTTT;W 
26 T^TTTT«TTT 
31 P(PP7P) 
25 TTT(PPPP,PPP) 
24 TTTTTTT 
24 FFFFF;NN;N;N 
25 TTTTTTTTTT 

26 TTTTTTTTT 
26 TTTTTTTT(P,P) 
26 TT^TTTTT 
27 ipipTTTT 
24 TTTTTTTT;N 
24 TTTTT 

(no target related region found) 

Table 3.9.1.  Continued.  (APC windows) 
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101A 44 TTTTT 
102A 44 TTTTT;U 
111A 24 rp rp rp rp rp rp rp rp rp 

112A 24 rp rp rp rp rp rp rp rp rp 

113A 23 rp rp rp rp rp rp rp rp 

114A 29 X7TT(P,P),NN) 
115A 24 TTTTTTTTT(P,P) 
122A 23 TTT 
123A 24 rp rnrprprnm 

125A 24 TTTT 
127A 24 TTTT 
129A 26 TTTT 
130A 23 TTTTTT 
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The false dismissal was 66T (small, very faint). 

After preclassification, 150 selected target 

exemplars and all 44 noise exemplars were split into a 

training set (74 targets and 22 noise regions) and a test 

set (76 targets and 22 noise regions).  The training set 

was used to design the optimum decision rule.  It was felt 

that similar results in classifying both sets would then 

indicate that the classifier had utilized robust character- 

istics of the target class and thus could be expected to 

give similar results on further data of the same type. 

A linear discriminant was used at the 

trucklike node while a maximum likelihood discriminant 

was used at the small target/non-target node.  Five 

features were used at both nodes, of which four were 

the same:  (h*w)/A, (h+w)/P, asymmetry, E&P.  The fifth 

feature was diff for the small target discriminant and skew- 

ness for the truck/APC discriminant.  The large targets are 

divided into three classes (tank, truck/APC, other) by a 

quadratic maximum likelihood discriminant using six 

features:  (h/w)•, (h*w)/A, diff, skewness, E&P and E . 

Two different procedures for classifying large regions 

( > 94 pixels) were tested.  One procedure attempted to dis- 

criminate between four fixed classes (tank, APC, truck, 

other); the other procedure used three classes (tank, APC, 

truck) and two "reject" categories (non-target, unidentified 

target).  Both used identical polynomial maps into decision 

space.  In the latter classifier, however, the maximum 

likelihood class assignment of a region had to be signifi- 

cantly better than for random noise regions (otherwise, the 
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non-target class was assigned) and significantly better 

than the next best target class assignment (otherwise, it 

was called an unidentified target). 

The detection results using the fixed class 

classifier on the 150 selected target exemplars are 

summarized by: 

Train 

Large 53/53 

Small 20/21 

Total    73/74 

Test Total 

53/55 106/108 

20/21 40/42 

73/76 146/150 

where "M/N" means "M successes out of N tries."  This 

classifier thus appeared to be robust. 

Table 3.9.2 displays the results of this 

classifier for all extracted regions, including all target 

and noise exemplars.  A false dismissal for a window con- 

taining a target occurs when no target exemplar (at any of 

the thresholds) is classified as a target (i.e., classified 

as tank, truck or APC).  Similarly, a false alarm is any 

noise exemplar (i.e., not associated spatially with a tar- 

get region) classified as a target.  However, multiple ex- 

emplars for the same noise region are counted only once. 

In effect, we are counting the image regions (as opposed to 

exemplars) which are classified as target regions by at 

least one exemplar.  If a region is, in fact, a target re- 
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gion and some exemplar of it is called a target, that is a 

success.  If no exemplar is so called, then a false dis- 

missal has occurred.  Finally, if the so-called target re- 

gion does not, in fact, contain a target, then a false alarm 

has occurred. 

The classifier results consist of 6 false 

alarms and 3 false dismissals from the 162 target windows 

and 2 more false alarms from 10 non-target windows.  No 

window contained more than one false alarm cue.  Details 

are as follows: 

False Dismissals       False Alarms 

32R 3T 

35R 11T 

33A 3R 

56R 

59R 

86A 

2N 

8N 

Figure 3.9.3a displays the 6 (total) false dismissals. 

Masks of the 8 false alarms along with their gray level 

windows are shown in Figure 3.9.3b. 

The question of how target identifications 

can be made in this environment of multiple exemplars, 

while secondary to the task of detection, is an interesting 
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64T   66T   32R   35R 

36A   86A 

3T 11T 

3R 56R 

59R 86A 

2N 8N 

Figure 3.9.3 

a , 
b, 

Classification results for NVL 
data base. 

Six false dismissals. 
Eight false alarm region masks 
with their gray level windows. 
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one.  Since each exemplar in a containment tree can be 

classified independently, there are many ways of arriving 

at a final region label.  Section 3.9.5 discusses the use 

of context and considers the identification of object re- 

gions from the classifications in their containment trees 

as an example of context.  We discuss the issue here simply 

from the point of view of critiquing the classifier perfor- 

mance.  For each containment tree containing at least one 

exemplar classified as a target, we chose the target type 

of the exemplar with the best edge-match (E&P) score in 

the tree and used that target type to designate the region. 

In the event that the "best" exemplar was not described as 

a target, we labelled the object region "unknown target". 

Only large targets were considered, since small targets 

while detectable were not considered identifiable. 

In a test which classified all best exemplars 

of large targets (55 tanks, 21 trucks, 36 APC's) the 

between-types confusion matrix was: 

classified as 

f _ "N 

T Tr A UT 

T 40 5 6 4 

Tr 6 8 7 0 

A 9 5 20 2 

A priori 

where "UT" is the "unknown-target" type. The 8 false 

alarms were classified as 1 truck, 2 APC's, and 5 small 
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targets.  Between-class confusion is high, with tanks 

being the most successful class.  Trucks and APC's were 

often confused with tanks.  A number of reasons can be ad- 

vanced for this performance.  First, tanks were the most 

numerous target and therefore could be identified most con- 

fidently.  Second, large APC's appeared with the wooden wave 

deflection board in view, producing a characteristic "c" 

shape.  No attempt was made to utilize this special know- 

ledge.  Third, the large targets appeared in only a single 

aspect and no generalized shape descriptors separating the 

different types could be extracted realiably.  It seems 

most sensible to model the target types as three-dimensional 

objects and to derive discriminators from their inherent 

shape and size differences from all aspects. 

The second classifier (which applied a 

threshold to reduce the false-alarm rate) did not improve 

classification as might have been expected.  Any threshold 

which would have reduced the number of false alarms also 

caused a number of false dismissals.  Thus while the 

method might be of use, its utility could not be judged on 

the limited data set available especially since there is no 

model relating the false alarm rate to the false dismissal 

rate. 

We may summarize the principal classification 

results as follows: the false dismissal rate of the system 

is less than 4%, giving a system detection rate of 96%. 
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The false alarm rate, based on the number of false alarm re- 

gions per unit area, is 8 false alarms in 174 (128x128) 

windows.  Assuming there are 500x800 pixels per frame and 

that a target occupies about 1/10 of a window, we conclude 

that the total processed area corresponds to about 6 

frames.  Thus the false alarm rate is 8/6 or 1.3 per frame. 

A separate test of the false alarm rate was made using a 

set of four 512x512 pixel frames (Figure 3.9.4).  All 

available targets were detected.  In addition, 4 large 

false alarms and 8 small false alarms were detected (see 

Figure 3.9.5).  However, 5 of the 8 small false alarms 

corresponded to fiducial marks.  Moreover, one large false 

alarm (in Fl) appears to be a target.  In any case, 7 

false alarms in 4 frames agrees well with the previous 

estimate of the false alarm rate. 
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Figure 3.9.4. Four 256x256 frames (after median 
filtering and sampling). 
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Figure 3.9.5. Cued regions in the four frames 
of Figure 3.9.4.  All targets 
were detected (masks indicated 
with arrows), along with 12 false 
alarms (5 corresponding to 
fiducial marks). 

3-151 



3.9.4.3  Threshold selection evaluation 

Our method of threshold range selection was 

described previously.  However, it bears repetition in this 

section.  Using the histogram of gray levels (perhaps of 

the previous image), choose as a range the sequence of gray 

levels from the mode  to the highest gray level with 

appreciable response (e.g., more than 5 points).  The pre- 

vious subsection demonstrated that this brute force approach 

gave excellent system detection efficiency.  Naturally, the 

liberal range of thresholds has important effects on 

system architecture, as discussed in Section 4. 

Since the number of thresholds used deter- 

mines the time cost (in a sequential implementation) or 

the hardware replication cost (in a parallel implementation), 

it is appropriate to consider methods which can accommodate 

a limited number of thresholds.  "Intelligent" methods of 

threshold selection are discussed in Sections 3.5 and 3.10.1. 

We wish to consider "brute force" methods which select 

thresholds at every other gray level, at every third gray 

level, etc. 

As may be seen from Table 3.9.2, correct 

target detections for single windows tend to occur in ex- 

tended runs.  Table 3.9.3 provides a histogram of run 

lengths.  In general, large targets had better contrast 

and their detections were stable over long runs.  Small 

targets were fainter and were detectable over only a few 
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Run length # of wi ndows 
Cumulative 

count 
% of 164 
windows 

0 5 164 100 

1 17 159 97 

2 25 142 87 

3 29 117 71 

4 27 88 54 

5 19 61 37 

6 12 42 26 

7 10 30 18 

8 8 20 12 

9 7 12 7 

10 3 5 3 

11 2 2 1 

Table 3.9.3.  Statistics of longest runs of 
correct target detections in 
164 target windows. 
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thresholds at most.  Table 3.9.3 shows what percentage of 

the targets were detected within runs of I or longer for 

I = 1,2,...  .  Thus the false dismissal rate would be 

11% if every other threshold in the range were omitted. 

Since there were so few false alarms, it is not possible to 

give comparable statistics of any reliability, but any 

scheme which considers fewer exemplars is bound to detect 

fewer false alarms. 

From a slightly different point of view, we 

might consider how to allocate a fixed number of thresholds 

within a given gray level range.  In the Hardware Technology 

section, the design assumes that five thresholds were im- 

plemented in parallel hardware.  Thus, for a gray level 

range of 10, thresholds would occur at every other gray 

level; for a range of 20, thresholds would occur at every 

fourth gray level.  If we use the gray level ranges in- 

dicated by brackets in Table 3.9.2 and distribute 

N (=1,2,3,...) thresholds equally spaced (where feasible) 

throughout the range, we compute the following results: 

N       # False Dismissals       # False Alarms 

1 25 1 

2 14 3 

3 7 7 

4 and above     5 8 

Thus, for four  or more thresholds equally spaced through- 

out the available gray level range of each window, no 
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additional false dismissals occurred beyond those already 

dismissed using the whole range.  Interestingly, for small 

N the increase in false dismissals is just about compensated 

by the decrease in false alarms.  One is doubled as the 

other is halved. 

Naturally, the threshold ranges depend both 

on window size and on window content.  It is therefore not 

likely that three thresholds will be sufficient in practice. 

The best choice of N, the number of thresholds, will result 

from estimating the probability/cost tradeoff for faint tar- 

gets.  Given a range of x gray levels for target regions, N 

should be about x/2 or x/3, which for the current data 

base  suggests that N should lie between 5 and 10.  For an 

extension to image sequences, see Section 3.10.1. 
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3.9.4.4  Classifier extension 

An attempt was made to apply the classifier 

derived from the NVL data base to a different set of thermal 

images.  The Alabama data base is a set of imagery taken 

with a thermoscope.  The actual sensor data are classified; 

radiometric noise was added to mask the source.  Figure 3.9.6 

exemplifies the type of imagery involved.  The gray level 

histograms are not smooth and in some cases runs of gray 

level bins contain no points.  Median filtering (using odd 

sizes) cannot be used to smooth such images since it pre- 

serves false contours.  Median filtering using even sizes 

provides a small degree of smoothing.  We elected to smooth 

by locally averaging over a 2x2 neighborhood just to intro- 

duce sufficient gray level variation so that 5x5 median 

filtering would be effective. 

The resultant images were windowed and 

threshold ranges were selected.  The Superslice algorithm was 

then applied in order to extract candidate object regions. 

It was necessary to increase the contrast threshold since 

the inherent contrast (including false contours) was higher 

than in the NVL data base.  With this adjustment, the Super- 

slice algorithm extracted regions corresponding to 64 out of 

65 targets.  After classification, 60 out of 65 were detected. 

In addition, there were 3 false alarms in the 48 64x64 win- 

downs considered (although one of the false alarms appears 

to be a target missing from the ground truth). 
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Figure 3.9.6.  Alabama data base (selected frames) 
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Figure   3.9.6      (continued) 
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3.9.4.5  Feature data base 

This subsection tabulates for each window 

all exemplars and their associated feature vectors (Table 

3.9.4).  It also includes the feature weightings for each 

node of the classifiers and the associated thresholds 

(Table 3.9.5). 
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CC*        iNKfSM       LOb    *       H/H 

Table 3.9.4 Recognition feature values for all 
candidate target regions from 174 
windows. 

Tanks. 
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Table 3.9.4 (continued) 

b.  Trucks. 
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d.  Non-target windows. 
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1. 20 *> N s> 1000 

2. Gray level difference *  0.2 

3. E&P ^0.2 

a.  Superslice decision thresholds.  Candidate object 
regions must satisfy all of these conditions. 

1. (h/w) ' s. 1.0 

2. (h*w)/A * 2.5 

3. |SDEV-3| * 2.5 

4. (E&P * 0.4) V ((E&P * 0.25) A (log N > 4.5)) 

5. E  £ 0.75 
P 

6. Max(h,w) < 64 

b.  Preclassifier decision thresholds.  Candidate target 
regions must satisfy all of these conditions. 

Table 3.9.5.  Classification decision threshold. 
(Feature variables are defined in 
Table 3.8.1.) 
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Feature 
factors 

c3 
c4 
c5 
c7 
clO 
c3 c3 
c4 c4 
c5 c5 
c7 c7 
clO clO 
c3 c4 
c3 c5 
c3 c7 
c4 clO 
c4 c5 
c4 c7 
c4 clO 
c5 c7 
c5 clO 
c7 clO 

Noise 
coefficients 

^98+02 
Ö58+02 
217+01 
675+02 
887+02 
218+02 
834+03 
466+01 
334+02 
719+02 
S'33+03 
789+01 
»41+02 
624+02 
6974-02 
129103 
313+03 
1 11 +-02 
J51+02 
594+02 
785 4-02 

Target 
coefficients 

c'51+03 
381+03 
i'53+02 
£'54+02 
i'94+03 
1 18+03 
132+04 
180+02 
349+02 
106^03 
435+-03 
;'00+02 
P'87 + 02 
121+03 
142+-03 
783+02 
352+02 
r'66+02 
678+01 
476+01 
357+03 

Table 3.9.5c. Maximum-likelihood discriminant 
used at small node using 
features c3, c4, c5, c7, clO.  A 
region is small if log N * 4.5. 
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Feature 
factors 

c2 
c3 
c5 
c6 
clO 
eil 
c2 c2 
c3 c3 
c5 c5 
c6 c6 
clO clO 
eil eil 
c2 c3 
c2 c5 
c2 c6 
c2 clO 
c2 eil 
c3 c5 
c3 c6 
c3 clO 
c3 eil 
c5 c6 
c5 clO 
c5 eil 
c6 clO 
c6 eil 
clO eil 

Noise 
coefficients 

.169+03 
♦519-01 

-♦551+01 
♦632+02 
♦259+03 
.157+03 

-♦325+02 
-♦112+02 
-♦454+01 
-.500+01 
-♦153+03 
-♦264+02 
.526+01 

-.255+01 
-.211+02 
-.808+02 
-.487+02 
.283+01 
.175+01 
.377+02 
.700+01 

-.230+01 
.127+02 
.266+01 

-.205+02 
-.184+02 
-.774+02 
.267+03 

Truck-like 
coefficients 

.277+02 

.174+02 

.216+01 

.262+01 

.683+02 
-.132+01 
-.160+02 
-.658+01 
-.520+01 
-.339+00 
-.582+02 
-♦688+00 
-♦857+01 
.151+01 

-.892-01 
.203+02 
.248+01 

-•303+01 
.835+00 

-.220+01 
♦125+01 
.387+00 
♦647+01 

-.641+00 
-.155+01 
,236+00 
.597+01 

-.413+02 

Tank 
coefficients 

.179+02 
♦698+02 
.138+02 
♦ 913+M 
.91C+02 

-.189+01 
J73+02 

-.176+02 
32 + 02 

-.457f00 

-.367+00 
-.878; 
.22: 

• .9 5 1+00 
-.119+02 

.323+01 
* 157+01 

-.28 
-♦199+02 
«55C 

••-,9421 
, .1 24+02 

-.545100 

• 1.50 + 00 

»424+01 
♦924+02 

Table 3.9.5d. Maximum-likelihood discriminant 
used at large node using features 
c2, c3, c5, c6, clO, ell.  A re- 
region is large if log N > 4.5. 
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Feature        Fisher direction 

(h*w)/A -.45 

(h+w)/P .088 

skewness .028 

asymmetry .56 

E&P -.69 

Threshold = -.7736 

Table 3.9.5e.  Fisher linear discriminant 
used at truck-like node 
using features c3, c4, c6, 
c7, clO. 

3-170 



3.9.5  Classification and context 

Our approach to the target cueing problem has been 

to extract and classify object regions independently of one 

another.  That is, segmentation is based on the assumption 

that the object regions are individually thresholdable, 

though not necessarily by the same threshold.  Classification 

is based on information derived from measurements on the 

individual components but does not take into account the 

intra- and inter-frame context of a region. 

The Gestalt laws of grouping (see [26]) are of 

interest in this respect since they refer to factors that 

cause some parts to be seen as belonging more closely to- 

gether than others.  These rules are applications of the 

basic principles of similarity which assert that region 

association is partly defined by region resemblance. 

There are several types of similarity which could be 

used with FLIR imagery, e.g., similarity of appearance 

(size, shape, brightness, etc.), similarity of location or 

proximity, similarity of spatial arrangement, and temporal 

similarity (multiple views of the same object in different 

frames). 

Whenever one can confidently group a set of N objects 

as being similar (based one or more of the types of context 

discussed above), it may be advantageous to classify them 

collectively (The Compound Decision problem) rather than 

independently (The Simple Decision problem). 
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The compound decision problem can be stated briefly 

as follows: 

There are a set of states of nature Q  = {1,2,...y) 

and a set of actions A = {1,2,...s}, associated with an rxs 

loss matrix L. . being defined for every i £ ft and j tA.  When 

the same decision problem is confronted N times, there exists 

a vector 6  = {6..,82,...8 } of states of nature where 9 tfi 

and a corresponding vector X = {x,,x~,...x } of random 

variables.  6 denotes the state in the kth problem and the 

distribution of x, is P(xk|6k).  For a given 6, , x, is inde- 

pendent of other x's and 6*s.  In other words 

N 
p(xN|3N) = n pu.le.) 

We do not assume that the 6's are necessarily independent. 

The loss in the compound decision problem is taken 

to be the average of the losses incurred at each of the N 

decisions and the compound risk is defined correspondingly, 

If all the observations XX7 are at hand before the 

individual decisions must be made, one can use a compound 

decision rule t = {t,,t?,...t } where t, = t,(j|X ) for 

each X is a distribution over A, according to which the 

kth action is chosen. Also one can define a sequential 

compound decision rule if only the observationsx, are at 

hand before the kth decision is made. 
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It is possible to work out a decision procedure which 

is compound Bayes against the distribution G(5N) where 

6N fcft
N (for the details see Abend [27]). 

The continuation of this project will be concerned 

with the use of context in general and with the compound 

decision rule in particular as a way of combining related 

observations.  Naturally, this will require a data base which 

is sufficiently structured to provide the necessary context. 

However, a recasting of the problem makes another type of 

context available. 

Consider a set of nested regions (exemplars) produced 

by the Superslice algorithm.  We wish to investigate how 

these regions can be treated in ensemble as defining (perhaps) 

a target region.  This suggests the following experiment: 

Given a set of object regions generated by Superslice, class- 

ify them independently.  Choose a nested region of signi- 

ficance:  namely, a subtree in the containment forest 

(corresponding to a given window or frame) all of whose 

paths from the root to the terminal nodes are of length ^nt 

where 0 ^t £■ 1 and n is the number of thresholds used by 

Superslice.  This insures that for a proper choice 

of t we only consider nested regions which keep appearing 

for a large fraction of the total number of thresholds. 

For each such nested region (subtree), suppose that 

there is a class, say, w (tank, APC, truck or noise) such 

that M of the N objects in the subtree have been assigned 
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to w and M ^ ti  where I  is the length of the longest path in 

the subtree.  (This rule insures that for a proper choice 

of t the chosen class w really dominates the entire subtree.) 

We then assign the class w to all of the N objects in the 

subtree.  Otherwise we leave the individual classifications 

unaltered. 

In an experiment using the NVL data base, 315 objects 

generated by Superslice from 52 windows were considered. 

The objects were hand picked to belong to the apriori classes 

tank, APC, truck and noise, and were then classified into 

five classes, viz. Tank, APC, Truck, Small target, and Noise. 

The corresponding confusion matrix is shown in Table 3.9.6a. 

We then applied the majority logic context rule on 

all the containment forests (52 of them) for t = .5; the 

resulting confusion matrix is shown in Table 3.9.6b. 

A comparison between the two matrices shows an 

improvement in the false dismissal rate.  The false alarm 

rate is left unchanged, since no significant nested regions 

(for t = .5) could be found where the noise class dominated 

the target class.  Within the target classes we find a 

marked improvement in the self-classification of tanks and 

APC's.  However, more trucks in the second case have been 

misclassified into APC's.  This is presumably not due to an 

error in the majority logic rule, but rather due to the 

inability of the classifier to discriminate trucks from APC's 
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Classified as 

•H 
M 
o 
M 
ft 

Small 
Tank APC Truck Target Noise 

Tank 28 1 2 4 19 

APC 10 26 15 35 22 

Truck 6 10 10 27 23 

Noise 6 1 1 7 62 

Table 3.9.6a.  Independent classification confusion matrix 

Classified as 

•H 
M 
o 
•H 
u 
ft 

Small 
Tank APC Truck Target Noise 

Tank 40 1 0 0 13 

APC '13 38 11 30 16 

Truck 6 15 6 27 22 

Noise 6 1 1 7 62 

Table 3.9.6b.  Majority logic classification confusion matrix 
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The majority logic context rule is not necessarily 

a superior classification procedure, since Superslice con- 

siders only the best exemplars and may therefore produce a 

better classification.  However, the present study does 

support the relevance of low-level context for classification 

validation. 
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3.10  The Dynamic Environment 

The work described heretofore has considered the 

analysis of single frames.  However, inasmuch as the sensor 

is capable of generating  30 frames per second and the 

hardware is capable of analyzing about 3 frames per second, 

it is worthwhile to investigate how infoi~mation culled from 

sequences of frames can improve the performance of the system. 

There are two ways in which sequence data can be helpful. 

First, a high scanning rate allows a succession of views of 

the same scene with only a small amount of change (dependent 

on platform motion).  Thus, image statistics should be rela- 

tively stable and multiple measurements may allow a reduction 

of the standard deviation of feature values.  Second, the use 

of motion information can provide a better description of the 

object regions in a scene.  For this project only a small 

data base of ten sequential frames was available (Figure 3.10.1) 

The image content and quality are similar to those of the NVL 

data base.  The sequence corresponds to every other frame 

from the FLIR sensor over a span of 2/3 of a second.  The 

images show a tank against a background of trees, and fade away 

more with each frame.  While this data base was not large 

enough to permit meaningful tests, it did allow some 

exploratory work. 
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Figure 3.10.1.  Ten sequential frames 
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Figure 3.10.1 (continued) 

3-179 



3.10.1   Threshold selection 

One does not expect (time-) adjacent frames to differ 

radically and therefore it should be possible to use good 

thresholds from the previous frame to segment the current 

frame or at least to guide the selection of thresholds in 

the current frame.  A sequence of 10 windows was extracted 

and smoothed (Figure  3.10.2) and a best threshold was chosen 

for each.  Figure 3.10.3 shows the effect of choosing  a 

lower threshold or a higher threshold.  As may 

be noted, the adjacent thresholds have a fairly negligible 

effect on the target region although there is a sizable 

change in the amount of noise (which can be eliminated by 

shrink/expand noise cleaning).  However, if one considers the 

sequence of best thresholds as determined by the border/edge 

match score   (Table 3.10.1), there is a large shift (from 

gray level 27 to 17) even in this short sequence of frames. 

Thus no single threshold is appropriate for the whole sequence, 

Nonetheless, the previous threshold when used on the current 

frame is a fairly good choice.  This suggests the following 

approach:  In a single pass over the frame, segment the 

current frame using the best threshold(s) from the previous 

frame and simultaneously compute the best threshold(s) for 

this frame (to be applied to the next frame in sequence). 

The advantage of this scheme is that the frame is not stored, 

thereby realizing a considerable saving in chip size and 

complexity. 
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a. 

b. 

Figure 3.10.2a. Ten 64x64 windows from the sequential 
data base. 

5x5 median filtered windows of 128x128 
originals, then sampled 2 to 1. 
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T-l T     Tfl    T+2 

4 
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10 

Figure 3.10.3. Effect of choosing lower or higher thresholds. 
The column labeled T shows the result of applying 
the chosen threshold to each window in the 
sequence.  Columns T-l, T+l, T+2 show the results 
of using thresholds 1 lower, 1 higher, and 2 
higher, respectively. 
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Threshold Sequential Window # 
#1   #2   #3    #4   #5   #6   #7   #8   #9   #10 

14 26 29 34 - 47 35 49 54 74 68 69 

15 34 29 42 35 43 48 54 88 82 79 

16 52 35 48 49 43 64 72 88 83 72 

17 60 43 52 51 57 74 81 84 82 81* 

13 53 51 72 58 72 72 90 90* 84* 69 

19 54 53 76 67 70 76* 93* 87 71 65 

20 59 60 85 75 72 59 89 66 75 65 

21 67 67 87* 85 72 59 88 66 62 

22 67 66 87* 100* 75* 50 80 63 50 

23 67 70 87* 100* 68 42 80 63 

24 67 72 87* 97 68 38 80 63 

25 71 70 79 97 73 33 83 61 

26 76 76 81 85 69 

27 79* 79* 62 58 68 

28 76 77 64 54 68 

29 75 75 62 43 52 

Table 3.10.1. Percentage border/edge match as a function of 
threshold for the sequence data (maxima indi- 
cated with ■'*"). 
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A somewhat different approach attempts to dis- 

tribute N thresholds across the threshold range dynamically. 

Suppose the threshold range is x gray levels.  It would take 

X/N frames to investigate each threshold in the range.  How- 

ever, as mentioned earlier, X/N is likely to be *• 3 .  Thus 

the entire gray level range capable of harboring targets can 

be sampled every 3 frames.  At a projected processing rate 

of 3 frames per second, the range would be sampled once per 

second.  A hybrid approach is also appropriate, devoting K of 

N thresholds to the most likely gray levels and letting N-K 

thresholds "rove" over the rest of the applicable gray- 

scale. 
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3.10.2  Region tracking 

The Superslice algorithm builds a forest-like 

structure of regions from each frame.  Within each struc- 

ture, a sequence of nested regions which are roughly similar 

in size (but arising from different thresholds) constitutes 

a set of exemplars of a possible object.  In addition, a 

certain number of accidents tend to be present.  Regions of 

either type are called "candidate object regions".  The 

frame to frame tracking process attempts to discover con- 

sistent temporal sequences of candidate object regions by 

selecting one exemplar per candidate object per frame, 

according to a dynamic programming model (see [28]). 

Two evaluation functions, S and D, are used.  The 

static evaluation function S(c) defines a figure of merit 

for each candidate object region c.  The Superslice algorithm 

provides such a figure of merit based on contrast and well- 

definedness.  The assumption is that the best exemplar for 

an object region is identified by having the greatest figure 

of merit.  The dynamic evaluation function D(c,c') defines 

the similarity of one candidate object region (c) to another 

(c1).  This is evaluated by considering the scaled differences 

between the feature vector of c and that of c1.  If c is a 

perfect exemplar then S(c) = 0 and D(c,c) = 0. 

Let (c..; j = 1,...,N.) be the set of candidate re- 

gions in the ith frame, i = 1,...,M.  We define the dynamic 

programming problem as:  find (c.  ; i = 1,M} such that 
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T(cT.  ) is minimum over all selection functions, TT. 

The solution is achieved by the following: 

Basis step:  T^.) = Sfc-j.); j = 1,...,N. 

Iterative  step:     T(c.    ,.)   = 

Ni 
S(ci + 1/j)   + rain   {Ttc^J   * Dtc^.c.^.) > 

K—1 

for   j   =   1,...,Ni+1 

The above procedure finds the minimum cost sequence 

of candidate object regions.  Candidate regions which are 

accidental are unlikely to persist from frame to frame; thus 

their D terms are likely to be large, thereby increasing the 

total cost of any sequence which includes them.  Note that 

there will be many sequences which are only slightly more 

costly than the minimum.  These suboptimal sequences will be 

based on other exemplars for the same object.  The optimal 

sequence is thus optimal for the particular formulations of 

S and D.  Giving more weight to S and less to D will tend to 

select best exemplars; while the reverse weighting will tend 

to favor frame to frame consistency.  A semantic model can 

provide guidance. 

In general, the image sequence may contain more than 

one object.  The scheme described above identifies the "best" 

object region sequence.  In order to extract region sequences 

corresponding to other objects in the image sequence, we 

must delete all candidate object regions accounted for by 
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the optimal sequence.  The inherent data structure specifies 

which regions are exemplars for each object.  By deleting 

all candidate object regions in each frame v/hich are similar 

to the selected region of the optimal sequence (i.e., contain 

it or are contained it it), we can set the stage for another 

application of dynamic programming.  This process is re- 

peated until only very poor (high cost) sequences are obtained. 

Presumably at this point all objects have been accounted for. 

Occasionally, a deletion step may leave a particular 

frame empty of candidate object regions.  This may occur for 

two reasons:  All objects were accounted for by the last 

dynamic programming step, or the candidate region proposer 

failed to elicit an exemplar for an actual object.  In the 

former case, the process will have terminated.  The latter 

case can be handled by associating a fixed "empty frame" 

cost which is the price paid for skipping a frame.  Of course, 

one can't knov; which case applied.  The conservative approach 

is always to assume the second case and apply the empty frame 

cost.  The termination criterion will then be based on a 

threshold for the total cost. 

The problem of an object leaving the field of view 

can be handled in a different manner by flagging candidate 

object regions which lie on the border of the image.  A 

partial sequence whose last element is flagged but which 

overall has low cost can be accepted as depicting an object 

which has moved off the image. 
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The dynamic programming algorithm described above has 

been implemented and tested on a sequence of ten windows of 

FLIR data containing a tank (Figure  3.10.4).  These windows 

were already smoothed by a 3x3 median filter to provide 

better response to thresholding.  The Superslice algorithm 

extracted a modest number of candidate object regions. 

Figure 3.10.5 displays these regions (although for nested 

sequences only the best static exemplar is displayed).  The 

solution to the dynamic programming problem was computed and 

the exemplars which correspond to the solution are shown in 

Figure 3.10.6.  There are of course many suboptimal solutions 

which are quite similar to this one.  Their cost is not 

significantly greater than the minimal cost.  When the in- 

dicated regions were deleted along with all other similar 

candidates, the only remaining regions corresponded to noise 

and any minimal cost path attempting to span several frames 

was substantially more costly than the optimal path or any 

of its similar suboptimal paths.  It seems reasonable there- 

fore to establish thresholds for static and dynamic cost in 

order to prune the search space. 
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Figure 3.10.4.  A sequence of 10 median filtered windows of a tank. 
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Figure 3.10.5.  Output of the Superslice algorithm. 

Figure 3.10.6.  Optimal sequenced regions using dynamic programming, 
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3.11  Image processing software 

3.11.1  Mini-XAP and Micro-XAP 

Software engineering experience has demonstrated 

the many advantages of modularized design with clearly de- 

fined software interfaces.  This approach was taken in the 

design of a picture processing software system named Mini-XAP. 

The system is intended for use as a flexible tool in general 

picture processing research efforts. 

Mini-XAP is implemented on a PDP 11/45 minicomputer. 

Picture files can be stored locally on disk or 9-track tape. 

Pictures may be output to either a TV monitor or a precision 

CRT film recorder.  Medium speed communication lines to 

UNIVAC 1106 and UNIVAC 1108 computers provide additional 

paths for picture data transfer and for program development 

activities. 

Mini-XAP consists of a number of interface levels 

which mediate between the user, the operating system and 

the image processing subsystem.  Briefly, it includes: 

VOS, a multi-user virtual operating system 

developed at the University of Maryland; 

DBM, a data base manager for image storage on disk 

and tape and for handling picture I/O; 

ULI, the user language interface which allows communi- 

cation between the DBM and LISP, the inter- 

active high level programming language; 
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The algorithm skeleton, a program-like structure for 

common image transformations in which certain 

arguments and functions are left unspecified 

until the skeleton is executed; 

Application packages, which offer the user access to 

predefined high-level image processing software. 

A complete discussion of Mini-XAP is presented in [29]. 

Micro-XAP is a PDP-11/45 image access facility for 

Fortran users under the UNIX operating system.  A more general 

facility, Virtual Arrays, has been developed for LISP users 

under UNIX.  Documentation of these image handling software 

systems can be found in [30]. 
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3.11.2  Viewmaster - a system for building image 

processing programs 

Viewmaster is a generalized, concatenative local 

neighborhood image processing coordinator.  The system is 

based on the premise that much image processing consists of 

sequences of transformations defined on local neighborhoods 

of each image point.  Within a sequence, the output image 

of each transformation is fed into the next.  A conventional 

approach to development of such programs is to create inter- 

mediate image products corresponding to the output of each 

transform.  This tends to load the I/O channels and waste 

mass storage. 

Our approach is to view local neighborhood operations 

as modules with similar input/output requirements.  Saving 

of intermediate images is avoided by devoting extra core 

storage to buffer the needed rows of these "virtual" images. 

The generalized structure of the processing environment is 

as a set of cooperating processes with system-like require- 

ments for resource allocation, race condition management, 

and memory utilization.  The procedural control structure 

is represented by a directed acyclic graph.  Pairs of adja- 

cent processes communicate through data blocks describing 

the shared virtual image.  Thus a virtual image is "produced" 

by a single process and "consumed" by one or more processes. 

This involves handling constraints which are not normally 

dealt with in buffer control systems. 
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A number of benefits derive from this approach. 

Image processing programs can be written without 

extensive knowledge of image I/O. 

Common image operations can be invoked by name 

(through a preprocessor) and concatenated. 

Program modules can be developed and tested inde- 

pendently and then integrated simply. 

Sharing of program modules is encouraged by the 

uniform operation environment. 

Available core storage is allocated and used 

efficiently.  Mass storage serves as a back-up 

only as necessary. 

File and directory space for intermediate image 

products can be reduced or eliminated. 

For a fuller description, see [31]. 
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3.12  Recommended algorithm and flowchart 

This subsection summarizes the various steps which 

make up the target detection algorithm described in Section 

3. 

Acquire the image from the sensor 

Sample the image 2 to 1 

Smooth the resultant image with a 5x5 median filter 

Compute the edge map: 

Apply a 4x4 difference-of-averages edge detection, 

selecting the maximum magnitude response over 

four directions 

Thin the edge response using local directional 

non-maximum suppression 

Compute a threshld range 

Histogram the image 

Identify the mode and the maximum significant 

gray level 

Select K thresholds from the range 

Evenly space K thresholds in the range 

Build the containment forest of object region feature 

vectors as follows: 

For each threshold (starting at the lowest): 

Threshold the image 

Extract feature vectors of connected compon- 

ents of above threshold points 

Accumulate primitive features as each compon- 
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ent is colored 

Select object region vectors using thresholds 

on size, edge/border cooccurrence and con- 

trast 

Make each vector point to its predecessor (if 

any) in the containment tree 

For each containment tree in the containment forest: 

For each exemplar vector: 

Classify the feature vector using the classi- 

fier 

If any feature vector in the containment tree has 

been classified as a target then signal a target 

cue for the corresponding region on the display 

Select the most "well-defined" exemplar in 

the containment tree (using the edge/border 

match criterion) 

Classify the target region according to the 

classification of this best exemplar (tank, 

truck, APC, unknown, small) 

Else classify the containment tree as noise 

IFEND 
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4.  HARDWARE TECHNOLOGY 

This section of the final report was prepared by the Westinghouse Systems 

Development Division for the Computer Science Center, University of Maryland. 

It contains a review and summary of a 21-month effort to generate and implement 

automatic target cueing algorithms, involving three phases, as follows: 

Phase  I:  Task and Technology Review (3 months) 

Phase  II:  Algorithm Selection and Test (9 months) 

Phase III:  Hardware Development (9 months) 

All phases of the program were completed during the prescribed period, 

including the construction and demonstration of an important recognition 

function using charge-coupled devices. 

The success of the program is due, in large part, to the close coordination 

between members of the government-university-industry team.  The principle 

team members from the government were Mr. John Dehne and Dr. George Jones of 

NVL.  For the University of Maryland, principle members were Profs. Azriel 

Rosenfelt and David Milgram.  The Westinghouse team included Dr. Glenn 

Tisdale, Program Manager, Mr. Thomas Willett, Project Engineer, Dr. Nathan 

Bluzer, and Dr. Gerald Borsuk. 

This section of the report was prepared by Thomas Willett and 

Glenn Tisdale. 

4.1  Introduction 

We will begin this section by reviewing the nature of and the need for 

automatic target cueing.  This will lead to a specification of system design 

goals in Section 4.2.  Algorithm design considerations will be examined 

in Section 4.3, including both system data processing requirements and 

their implementation in suitable hardware.  The process of hardware fabri- 

cation will be covered  in Section 4.4.  Conclusions and recommendations are 

offered in Section 4.5. 

Definition of Automatic Target Cueing 

Before discussing the design goals and hardware implementation for 

an automatic target cueing system, it  is useful to examine its character 

and purpose. 
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As the tools used in reconnaissance and target acquisition operations 

continue to improve, it is becoming increasingly clear that man himself is a 

performance bottleneck.  Sensors provide greater resolution, dynamic range, and 

speed; and the techniques that make effective use of sensor information, such 

as communication links and weapon delivery systems, are also being advanced. 

However, acquisition of target material largely depends on the ability of a human 

operation to search sensor imagery in real time.  If he misses targets, or 

identifies them incorrectly, mission performance is degraded. 

One way to improve this situation is to provide the human with cues to 

locate, and possibly identify, targets on his displays.  Such cues might 

originate with a priori information, or from the detection of peculiar target 

conditions such as motion, hot spots, or electromagnetic radiation.  However, 

a more general approach is to apply automatic recognition techniques to the 

imagery.  As shown in Figure 4-1, the image processor serves as an information 

filter on the image, alerting the human to the presence of potential targets, 

possibly by audible signals initially, and then by providing visual cues or 

overlays on his display.  In this process, the final verification of target 

identity is reserved for the human operator.  The image processor serves to 

assist him. 

Automatic cueing can be carried out either in airborne or ground loca- 

tions.  In the airborne situation, the operator views a CRT-type display for 

acquisition of targets on a real-time basis.  His determination may result in 

action in a matter of seconds, either offensive or defensive.   On the ground, 

interpretation may be required in real-time, or on a more relaxed basis.  In 

the proposed operation of remotely piloted vehicles (RPVfs), for example, a 

video link may be used to obtain a CRT presentation at a ground station of the 

output of a sensor located on the vehicle.  The problems for the operator are 

somewhat similar to the airborne situation; however, his appraisal of the 

sensor image is entirely limited to the CRT output.  He can't look at the tar- 

get area directly.   On the other hand, he is not distracted by problems such 

as vehicle operation and personal security. 

In a more relaxed mode, cueing of wide area high resolution reconnaissance 

imagery might be used to greatly reduce the time required in scanning imagery. 

In this case, the results of the processing is desired in a matter of minutes, 

so as to respond to the motion of mobile targets. 
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4.2  System Design Goals 

Key considerations in the design of an automatic target cueing system 

are its performance, physical characteristics, and allowable cost.  We will 

deal with each of these considerations in this paragraph.  However, a quantita- 

tive determination of design parameters will depend on the manner in which the 

mission is implemented.  Such implementation will be discussed first. 

As explained in Section 4.1, the target cueing function might be performed 

aboard a vehicle, or at a ground station if imagery is relayed for analysis. 

In either case, the performance goals will tend to be comparable.  As regards 

physical characteristics and cost, however, the vehicle location will demand 

much tighter restrictions.  Our discussion will proceed on the basis of the 

vehicular application.  Both helicopters and high-speed aircraft are airborne 

candidates.  The RPV image, on the other hand, will be analyzed at a ground 

station; therefore, the physical limitations within the RPV are not a problem. 

As the state of the art in automatic target recognition develops, and high 

levels of performance are attained, it is anticipated that the human observer 

will eventually be eliminated in some applications.  For example, recognition 

equipment might be placed aboard a missile for unaided terminal guidance. 

The requirement for high performance, small size and weight, low power consump- 

tion, and low cost will all apply in this case. 

Performance Goals 

Key performance parameters are the detection and recognition rates for 

targets of interest, the false alarm rate, and the speed of operation of the 

cueing system.  Detection occurs when a target of any kind is indicated by 

the cueing system, while recognition occurs when the correct target class 

is selected from among several possible classes.  Detection and recognition 

performance is expressed as a percentage of the targets which are actually 

available.  A false alarm occurs when a target is indicated even though none 

is present.  The false alarm rate is expressed on the basis of a unit of 

elapsed time or area of coverage.  The required speed of operation is determined 

by the time available to the operator to make decisions, the search area to be 

covered by the sensor, and the sensor frame rate.  It depends heavily on human 

factors considerations, such as decision times and reaction times, and the 

choice of prioritization ground-rules. 

4-4 



In the discussion in the first quarterly report,   it was noted that the 

cueing system must significantly improve the search capability of the unaided 

human interpreter if it is to be cost effective.  The problem is to locate 

targets which occupy a tiny area in the sensor field of view, and are embedded in 

background clutter and noise.  The performance of the interpreter is limited by 

visual scanning rates, eye fatigue, and conflicting duties.  References were 

cited which tend to indicate rather low target acquisition rates (such as 

33 percent detection and 25 percent recognition) under realistic conditions. 

Although no data are available which provide a direct comparison of operator 

performance with and without cueing, there is growing evidence that cueing 
2 3 

systems could more than double this performance. '   Tf this evidence is 

substantiated, then the outlook for a cost-effective cueing system appears 

very promising.  However, a final determination depends on combining specif i< 

system and mission parameters. 

We are particularly concerned with the airborne mission, where space 

and weight available for the equipment are at a premium.  Mr. Donald Looft, 

Deputy Director of DARPA, has described airborne scenarios for helicopters 
4 

and high-speed aircraft as follows: 

"Now visualize a likely scenario for the one-man pilot observer. 
He must direct the sensor and visually scan his display for tar- 
gets which most assuredly are concealed by terrain or background 
clutter.  He must fly low and as fast as possibly to minimize ex- 
posure to radar controlled weapons, say in the helicopter case, 
speeds of 60 to 80 knots at altitudes of 100 to 200 feet are typi- 
cal.  In the case of attack aircraft, speeds of 400 to 500 knots 
at altitudes of two to three kms. (6560 - 9840 feet) are normal 
flight profiles, though the latter can also be "down on the deck". 

Algorithms and Hardware Technology for Image Recognition, 
Westinghouse Quarterly Report on Contract DAAAG53-76-C-0138, 
1 May through 31 July 1976, page 2-2. 

2 
Tisdale, G.E., A Digital Image Processor for Automatic Target 
Cueing, Navigation, and Change Detection, Proceedings of the 
SPIE Symposium on Tactical Reconnaissance, Reston, Virginia, 
April 20, 1977. 

3 
Algorithms and Hardware Technology for Image Recognition, Quarterly 
Management Report by Univ. of Maryland, 1 August - 31 October, 1977, 
Par. 2.3. 

Looft, D.J., Image Understanding — A Perspective of POD Needs, banquet 
speech presented at the Sixth Annual AIPR Symposium, College Park, 
Maryland, June 1, 1976. 
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"At the same time, the man or the crew is performing these flight 
maneuvers which are "hairy" in broad daylight, let alone darkness, 
he must monitor his aircraft instruments, he must be wary of 
terrain obstacles, and he may well be under enemy fire.  Ideally, 
the pilot wants to acquire and engage targets on a single pass. 
If he must take several passes, his survivability is greatly 
reduced.  If he has been directed to a probable target area and is 
able to take advantage of terrain masks he must "pop up", make 
his observations, acquire and engage targets in times like 15 or 20 
seconds.  He would always like to acquire and engage enemy targets 
at sufficient standoff distance to be out of range of radar 
controlled enemy air defense weapons.  This means he is usually at 
or near the threshold recognition range of the sensor." 

A detailed examination of the trade-offs between the required euer 

processing rate and the allowable false alarm rates was presented recently by 

Dehne et al. of NVL .  For a set of mission parameters which relate primarily 

to the helicopter scenario, it was found that for processing rates between 3 

and 10 frames per second, from 0.5 to 1.8 false alarms could be accommodated 

per frame.  These results assumed that 20 seconds were available to cover 

a large search window, resulting in about 0.7 seconds to handle each frame. 

This figure includes the frame processing time, the time to slew the sensor, 

the operation decision time per false alarm (0.2 seconds) and his reaction 

time to advance to the next frame (0.2 seconds).  The report considers 

sequential as well as combined processing and slew, with the former preferred. 

A separate consideration with the above processing rates is that 

the cueing symbols superimposed on the display must appear in the correct 

location even after the processing delay.  With a frame rate of 30 per second, 

the delay covers 3 to 10 frames (0.1 to 0.3 seconds).  Misregistration of target 

and symbol could be caused by target motion relative to the terrain, or by the 

changes in the field of view due to aircraft motion.  Broadside motion of the 

target is generally the worst case.  Suppose the cueing window subtends twice 

the extent of the target on the display in both the horizontal and vertical 

dimensions, and is located at the point of the target center in the processed 

frame.  It can move by half its dimension in any direction and still be 

contained within the cueing window.  For a vehicle 20 feet in length which 

subtends 20 pixels in the display, 

Dehne, J.S., Van Atta, P. and Raimondi, P., Specifying Image Processing 
Systems for Thermal Imagers, paper presented at the Seventh Annual 
Symposium of the EIA-AIPR Committee, College Park, Md. 22-24 May 1977. 
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motion of 10 feet must be accommodated over a worst case period of 0.3 seconds, 

with a corresponding allowable broadside speed of 30 feet per second (43 mph) . 

This result is independent of range if the window is proportional to target 

size. 

The report also considers the use of a wide sensor field of view for 

cueing, followed by operator confirmation with the narrow field of view.  It 

is assumed in this case  that the capability of the euer for recognition exceeds 

that of the operator by an amount sufficient to compensate for the increased 

field of view.  Under these conditions, one false alarm per frame could be 

accommodated with a processing rate of 0.54 frames per second (about a 10:1 

reduction over the previous case).  However, at the present state of the art, 

this improved euer performance relative to the operator has not been demonstrated. 

In that regard, it is noted that because of the eye integration time of 0.2 

seconds, the operator gains a signal-to-noise improvement over the euer of, 

perhaps, 2.5. 

A final approach considered a sensor with an expanded, high resolution scan 

area equivalent to the target search window.  Due to display limitations, 

the operator sees either a low resolution version of the entire window, or a 

small segment containing potential targets as selected by the euer.  The euer 

processing rate is not greatly affected by this mechanization. 

For the assumed frame size of 375 by 500 pixels, the processing rates of 

3 to 10 frames per second correspond to data handling rates of 0.6 to 1.9 

megapixels per second. 

The foregoing discussion was addressed to the helicopter scenario.  For 

the high-speed aircraft, the available search time will tend to be lower, but 

the required search window will probably also be reduced.  The reduced search 

window can be achieved by reliance on navigation aids for the acquisition of 

predesignated targets.  At the high speeds and possible low altitudes, it 

appears that the single-seat operator, because of the burden of aircraft 

navigation, will be assisted significantly by the cueing system.  Frame rates 

which are comparable to his reaction time, or somewhat lower, in the vicinity of 

one per frame should be tolerable from the point of view of overall processing 

time.  However, from the point of view of increased detection and recognition 

rates, as well as reduced false alarm rates, it appears useful to consider the 
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integration of results from successive frames.  The assignment of a priority 

weighting to target cues will improve the probability that important targets 

will be considered when a number of opportunities occur. 

Physical Characteristics 

The significant physical characteristics of the cueing system for air- 

craft or missile use include size, weight and power consumption. 

The increased availability of general-purpose MSI circuits has made it 

possible to offer existing euer algorithms, using conventional packaging tech- 

niques, in packages which should be acceptable for aircraft use.  A total system, 

excluding displays, might be expected to occupy a volume of 0.5 to 1.0 cubic 

feet, and to weigh 15 to 30 lbs., including power supply.  Power in the 

neighborhood of 200 to 300 watts will be required. 

For missile applications, conventional packaging can be improved upon 

by use of flat packs, or bare chip packaging, and by the introduction of 

some specially designed chips. 

One thrust of the present Westinghouse program, however, has been to 

determine the necessary area of silicon substrate required to provide euer 

functions.  As will be described in Section 4.4, the fabrication of special CCD 

LSI circuits appears feasible, and would reduce the euer to an overall chip 

area of a few square inches.  On this basis, introduction of cueing functions 

into an artillery shell, for "fire-and-target" performance, becomes feasible. 

Allowable Cost 

In Section 2.4 of the first quarterly report on this program, an attempt 

was made to relate the allowable euer cost to its mission value.  The argument 

held that if the operator's performance was significantly improved with the 

use of cueing, then the value of cueing becomes a significant fraction of the 

overall cost of flying a series of missions (a very large figure).  Unfortunately, 

the improvements associated with cueing have not yet been measured, and the 

assignment of an improvement factor will no doubt be elusive.  Furthermore, 

an upper cost limit, which is much lower, can realistically be anticipated for any 

new addition to a vehicle complement. 
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Since the cueing system is a digital processor, its production cost 

using conventional packaging techniques can be estimated reasonably well. 

For helicopter or aircraft use, a figure of $20K to $50K per unit is suggested. 

Reductions in size by increased use of LSI will tend to reduce the recurring 

cost for each unit, but at the expense of a significant nonrecurring cost for 

initial development. 

Implementation of a complete cueing system, using CCD circuits on a small 

number of silicon chips, takes this sequence one step further.  The final unit 

recurring cost, in production, might range from $1K to $5K, including test, 

but the development program would be a multimillion dollar affair.  Before 

such an investment could be considered, a number of hurdles would have to be 

overcome.  First, the satisfactory operation of the system would have to be 

established.  Next, an attempt should be made to compare the performance of 

competitive approaches, since only one design can probably be initiated. 

Finally, a variety of applications should be considered, so that the develop- 

ment cost can be divided as much as possible. 

A practical approach to this dilemma, which has been initiated in the 

present program, consists of the selection and implementation of key circuit 

functions in CCD form.  These circuits can hopefully be used in hybrid arrange- 

ments to reduce the size, weight, and power of early euer designs.  With the 

growing availability of new chips, these values will continually decrease. 

At the same time, the solution of a variety of application problems will be 

possible from the library of available chip designs. 

4.3 Algorithms, and Hardware Implementation 

This section describes a preferred set of algorithms developed by Maryland 

which tentatively comprises the first portion of a cueing system.  A system flow- 

chart is shown in Figure A.3-1.  A description of data flow and storage require- 

ments is included. 
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Figure A.3-1.  System Flowchart 
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In general, the Median Filter acts to suppress noise.  The Gradient Operator 

extracts edges which are then thinned by the Non-Maximum Suppression Algorithm. 

At the same time a set of gray levels is determined and the filtered image is 

thresholded at each gray level.  A Connected Components Algorithm partitions 

each of the thresholded images into potential object regions.  The Super Slice 

Algorithm correlates perimeter points formed independently by the Non-Maximum 

Suppression and Connected Components Algorithms and a score is obtained for 

each gray scale threshold.  These scores and several other algorithms form a 

set of Classification Logic.  A short description of each algorithm follows. 

4.3.1  Gradient Operator 

The Gradient Operator is an edge detector which is defined as GRAD OP = 

max {|A-B|, |C-D|}  where A, B, C and D each represent the sums of overlapping 

regions of 4 X 4 pixels each, as seen in Figure 4.3-2. 
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Figure A.3-2.  Gradient Operator 

The value o\ GRAD OP is placed in the pixel location marked Mx" which is one 

pixel to the left and above the center of the entire region.  The key arithmetic 

operation in GRAD OP is the formation of the difference 

A-BirC  0 

[A- 
if   |A|  <   |B| 

|A| > |B| 

(4.3-1) 

which is realized on a silicon substrate with the configuration shown in 

Figure 4.3-3.  D.  is a diffusion diode through which charge is injected into 

the chip; A and B are gates whose potentials are controlled by voltages represent- 

ing the sums A and B, respectively.   These gates will form a trap to retain 

some of the injected charge.  The trapped charge is equal to A-B and is removed 

by the transfer gate. 

•J    «I 

111; Transfer 
Gate 

Figure 4.3-3.  Subtraction Module 
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Let us consider a physical analogy in which Din, A, B, and TG are a set of 

steps, the height of each step represents the potential, and the charge is 

represented as water. 

,i 

3 (T
1 

i  TG 

(3 

Figure 4.3-4a.  No Water Trapped, Figure 4.3-4b.  Water Trapped 

Wlien the height (potential) of step (gate) A is raised above that of step (gate) 

B, water (charge) is trapped above B in an amount corresponding to A-B.  Figure A 

4.3-4 a, b represents both conditions of Equation (4.3-1). 

The algorithm  B-A I 0 if |B| < |AI 

A if |B| > |A| 

requires another silicon substrate in which the gate positions of A and B are 

reversed.  The block diagram of the absolute difference operator  |A—B j  is shown 

in Figure 4.3-5. 

A:1 CCD 
Subtraction 

Block 

Q 

'< 
1 < 

\ 
CCD 

Summing 
Block —«"V V 

CCD 
Subtraction 

Block 
Qij 

Figure 4.3-5.  Absolute Value Circuit 
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If !A| < IBL then B   = 0, A   - B-A and A   + B   = B-A.  Similarly, if 
out      out out   out J 

|A| > |B|, then B   « A-B, A   «0 and A   + B   ■ A-B.  These two statements 11   ' '       out        out out   out 

form an absolute value operator.  A similar operation can be formed for |c-D|, 

but GRAD OP really comparec |A-B| and |C-D| and chooses the maximum since it 

is defined as max {|A-B|, |C-D|}.  Figure A.3-6 shows the GRAD OP block diagram, 

and Figure 4.3-5 shows the outpu s at various locations. 
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Module 

(I) 

ABS 
Module 

(2) 

♦-H 
NDRO 

Module 

+-+ 
NDRO 
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•w 

I *% ■ B,j I 

■W 
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Figure 4.3-6.  CCD Gradient Operator 

Condition I A-fc| < / c-x>| | C-t>l <  I A-Bl 

!    ABS   Module (3) 
OuJpu* 

|C-D|-  I A-B | I  A-B | -   | C-fc| 
1 

Jwmmm«     CCD | c-t>| ■* | A-Q| |C-T>|-|A-BI 

Outputs    Frpw 

Jv>rr.i^M»10.      CCb 
Z|c-t>| 2 | A-B j 

Figure 4.3-7.  Output of GRAD OP at Various Locations 
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4.3.2 Median Filter 

The Median Filter  acts to extract the median value from a 5 x 5 pixel 

window and place that value in the center pixel location; the Filter can be 

considered as a smoothing operator.  The Filter quantizes each of the 25 

analog signals into a number of discrete units and then sorts the 25 

quantized signals by arranging them in a descending order of magnitude. 

a.  Charge Quantizer 

The silicon substrate forming the Quantizer is shown in Figure 4.1-8 

DC    HW   TG   SW   BG   TW  IG 

Input  .    I     I     I     1.1,1    I 

Diode 

Figure 4.3-8.  Charge Quantizer.  Symbols are Identified in the Text 

D   is the diffusion diode through which charge is injected into the chip 

and into the holding well, HW.  DC blocks the charge from leaving via D. . 
in 

An amount  of charge, Q, proportional to S, the signal voltage, is removed 

from HW via the transfer gate, TG, and placed in the signal well, SW. 

Via the blocking gate, BG, and the thimble well, TW, a discrete amount of 

charge, q, is removed and placed in well g..  Another quantum q is removed 

from SW, and placed in g while the first charge has been shifted to g . 

This process is repeated until SW is empty and all the charge has been 

placed in a number of discrete wells g., g„ ... g . 
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Figure 4.3-9  Flow Analogy to Charge Quant: 

proportional to the signal voltage S,being poured into a tray of quantized bins. 

When a bin is filled with water the water flows over the top into the next bin. 

The volume of water is divided between a number of discrete bins. 

b.  Sorter 

Recall that the contents of wells g, , g_, ... g of the quantizer 
1  /      n 

(Figure 4.3-8)each contain, at most, an amount of charge q.  The contents of 

euch  well is parallel shifted into its corresponding channel of the sorter 

are A.3-10) so that if there were q charge in g , there is now q charge in 

I and so on.  Forming traps as described in Section 4.3.1 with wells   P -,, P 2» 

and P -,the charge in each channel is shifted into the large holding well (LHW). 

The large holding well is partitioned into N channels also.  Consider a numerical 

example; a sequence of numbers 4, 7, 5 is quantized at q = 1 so that 4, 7, and 5 

levels respectively represent each number.  Then Figure 4.3-11 shows the sequence 

as it goes through the quantizer; the g , g0, ... g wells; the I., T_, ... I 
i  /      n 1  L n 
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Figure 4.3-10 CCD Sorter 

channels; and the large holding well.  It also shows the removal sequence from 

the large holding well and the remainder at each stage.  The numbers are removed 

In order of decreasing magnitude 7, 5, 4 which shows the numbers have been 

sorted by magnitude. 

4.3.3  Non-Maximum Suppression 

The Gradient Operator extracts edges in either the horizontal or vertical 

direction; the Non-Maximum Suppression Algorithm then looks in a direction 

perpendicular to the edge for a larger gradient.  If a larger value cannot 

be found, the edge under consideration is retained; the edge is removed if 

a larger value is found.  The Algorithm is shown in Figure 4.3-12. 
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Figure 4.3-11  Sorting Sequence 
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Figure 4.3-12. Arrangement of Comparison for Non-Maximum Suppression 

The gradient under consideration is a vertical one and the ar«a examined tut- 

larger gradients is in the vertical direction. 

Embodiment of the Non-Maximum Suppression Algorithm (NMS) requires sever,, 

operations with CCD structures.- A key part of NMS is extracting the largest 

xm gradient value in the neighborhood surrounding y; xm is then compared to the 

gradient value yg representing the y
th pixel.  Sorting the x  values to obtain 

xm can be accomplished by the sorting operation described earlier.  Comparing 

xm and yg can be done by the subtraction module also described before.  Then 

the block diagram appears in Figure A.3-13. 

m -YQ 
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Input Enable 
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CCD 
Input 

CCD 
S/R 

Output 
 k> 

Figure A.13. NMS Block Diagram 
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This time the subtraction module outputs an enable signal to the CCD 

shift register instead of the actual difference.  A blocking gate shown in 

Figure  4.3.-14 is used to block (enable) y  from entering the register. 

p* 

M?m% 

A 

Dumping Gate 

CCO Channel 

Channel Slop 

Figure  4.3.-14     Blocking  Gate 
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A.3.4  Threshold Determination 

The philosophy here is not to attempt to find a single threshold but 

rather to use a set of thresholds which span the range of gray scale.  For the 

NVL FLIR data, fifteen (15) gray scale levels represented the gray scale 

ranges and selecting a threshold every three gray scale levels was deemed 

to give satisfactory target detections by the University of Maryland. 

To implement this type of algorithm would require a sorter (as described 

in section 4.3.1.2 which arranges the gray levels in descending order 

for the image.  The first number (the largest) leaving the sorter corresponds 

to the first threshold and sets a counter to 1.  The secoiv     ing 

number is compared with the first and the counter updates to 2 if the second 

number is different.  If it is the same, the counter remains at 1.  In 

general, each number is compared with the previous one to determine if the 

counter should be updated.  When the counter gets to 3, the second threshold 

level  is determined.  In this manner every third gray scale level is 

selected and used as a threshold.  A block diagram of the implementation is 

shown in Figure 4.3-15. 

4.3.5 Connected Components 

The purpose of the algorithm is to segment the image data stream into 

smaller domains.  Each small domain includes a single object in the image 

plane.  This algorithm distinguishes between objects and isolates regions 

so that statistics for Classification Logic can be obtained. 

Assume that the original image has been thresholded and the result is in 

binary form with gray levels exceeding g. shown as l's in Figure 4.3-16. 
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Figure 4.3-15.  Threshold Determination 
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Figure  4.3-16a.     Binarv  linage 
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Figure 4.3-16b.  Computations for second Row 

4-22 



Two image lines are retained in memory so that each pixel can examine its 

neighbors to the left and right and above and below.  No diagonal connections 

are permitted under this convention, and an adjacent (horizontal or vertical) 

pixel must be occupied in order to make a connection.  No skips or gaps are 

allowed, and the computations start one pixel in from the edge.  In Figure 

4.3-16b, there are four distinct regions, A, B, C, and D.  The only possible 

connection between regions B and C is through a diagonal, which is not allowed 

Computations for the fourth row are seen in Figure 4.3-16c. 

A B B B B D D 

A B B B C D 

A B B B C D D 

A B B B C c D 

1 1 1 1 i 1 1 1 1 1 

1 1 1 

770189V5 

Figure 4.3-16c.  Computations for Fourth Row 

Here, there is a connection between regions B and C and an equivalence statementJ 

B - C, is carried along.  At the end of the sixth row, there is another 

connection between C and D (C = D) and all the regions are completed as seen 

in Figure 4.3-16d. 
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Figure 4.3-16d.  Completed Image 

The areas of A, B, C and D are computed by cumulating the number of pixels 

assigned to each.  The perimeter is calculated by cumulating the number of 

pixels assigned to each region which are neighbors of zeros, i.e., the 

neighbors did not exceed the gray level threshold, g . 
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a.  Coloring Operator 

We assume that the Connected Components Algorithm processes a binary 

image, i.e., each pixel contains either a one (1) or a zero (0).  The binary 

data stream will enter the Coloring Operator and emerge transformed into 

different colors or signal levels for different shapes.  Read out of the 

binary picture will progress one horizontal line at a time starting with the 

top line and progressing downward.  Each horizontal line will be read out 

from left to right.  Since the image data is read out serially, the Coloring 

Operator is a local operator.  The coloring of each non-zero element in the 

image plane will be done as shown in Figure 4.3-17. 

^ A     C 

One Line Delay 

D 
Image 5^ Coloring Operator 

77 0942 V 10 

Figure 4.3-17.  Data Flow Through Coloring Operator 
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The Coloring Operator is a transformation from a binary picture to a colored 

pne by a mapping T 

T (A, B, M):  C       C1 

where C is the color of the transformed pixel C, the variables A and B 

represent nearest neighbors of C, and M represents an available color.  The 

relative locations of pixels A, B, and C in the image plane are shown in 

Figure 4.3-18. 

B 

Figure A.3-18.  Relative Location of A, B, C 

We define the coloring window as always containing these three elements. 

Elements A and B are nearest neighbors of C and have already been processed 

by the Operator.  Element B is located one horizontal line above elements 

C and A.  Element C is being painted by the Coloring Operator according to 

the following rule: 

For C / 0 \Aif A/0,  B/O 

B  if A «  0,   B f 0 

M if A - 0,  B = 0 

When adjacent elements have different colors, the element being painted assumes 

the color of the nearest neighbor in the same line (rows dominate).  Whenever 

elements A and B are zero and element C is not zero, element C  is given a 

new color.   Multi-colored object regions occur when pixels A and B are both 
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non-zero, not equal to each other, and C is non-zero, i.e., 

For C ^ 0,   A +  B t  0 

Painting of the binary picture with different colors will be accomplished 

by using a different number of charge quanta to represent various colors. 

The number of colors required is a function of target size, shape, and 

frequency of occurrence within the image plane.  For purposes of the immediate 

discussion, we shall assume K colors are required, therefore each non zero 

pixel can require up to K memory locations to represent its color by a 

thermometer code (see Quantizer Section 4.3.1.2). 

The configuration of the Coloring Operator is shown in Figure 4.3-19; 

note that there are K outputs C  for a single input C.  Such a construction 
K 

is required to reduce cummulative errors if analog implementation of Module C 

is attempted.  Moreover, the configuration shown in Figure 4.3-19 is readily 

amenable to LSI and CCD technology.  Each bit of C  output is governed by 

the expression, 

For C^ 0 

c1- 

[   4 if ^/O, BK + 

BJ if \ - o 

The required input for operating the Coloring Operator are C, A , B and M . 

Input A  is readily obtained by tapping the first vector element stored in the 

SI/SO CCD delay line.  Similarly, vector element B  is also obtained by tapping 

the output of the SI/SO CCD delay line.  The construction of this delay line 

is readily feasible and has been addressed in the Data Flow Section. 
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Figure A.3-19.  Details of the Coloring Operator 
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Figure 4.3-20.  System Block Diagram 

The System Block Diagram for the Connected Components Algorithm is shown in 

Figure 4.3-20.  Before continuing with the specific hardware implementation 

it is useful to consider a general description of the implementation as 

a review and an indication of where we are going next. 
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The purpose of the Connected Components Algorithm is to segment an 

image frame into object regions; these object regions are potential shapes 

of interest and features are extracted from them for classification purposes. 

We assume that Time Delay Integration is part of focal plane signal processing 

which implies that the image comes to the euer in the form of one line at a 

time, i.e., the pixels in one line arrive in parallel.  The Connected 

Components Operator then moves along this line of pixels, with the previous 

line in memory, determining which pixels are part of a particular object 

region or if a new object region is starting.  If we are to extract features 

from each object region, there must be a means for distinguishing between 

different object regions.  One approach to the problem is to color each object 

region with a different color and then have a feature extractor operator 

assigned to each color.  Where an object has several colors, the feature 

extractors corresponding to those colors accumulate their features, dump 

them in a scratch feature extractor to combine them, and reassign the result 

to one of the two feature extractors.  Let us now proceed into the specific 

areas. 

c.  Feature Extractor 

There is a Feature Extractor corresponding to each color as shown 

in Figure A.3-20.  The signals shown in Figure 4.3-20 enable the particular 

Feature Extractors for computations when an object has several colors.  They 

also direct which Feature Extractor will receive the contents of the scratch 

Feature Extractor, i.e., which color will dominate.  We have organized 

Figure 4.3-20 so that the number of inputs to the Feature Extractors is 

minimized.  Each Feature Extractor is visualized as a many-channeled, large 

holding well which follows along the lines of the sorter.  (See Section 

4.3.2) 
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Figure 4.3-20.  Organization of Feature Extractors 

Each channel would correspond to a  particular feature and since the features 

are cumulative, they would simply add in the scratch feature extractor.  A 

discussion and implementation of the features by the University of Maryland 

is found in Section 3.8.  We have described the front and back ends of the 

Connected Components Algorithm, now we lay out the middle portion which is 

designed to handle multi-colored objects. 
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a.  Equivalence Statements 

We present in Figure 4.3-21 an arbitrary object region which provides 

sufficient characteristics to explain the remainder of the Connected 

Components Algorithm. 
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Figure 4.3-21.  Arbitary Object Region 

We are coloring the object from left to right and from the top to the bottom.  At 

row 1, two seemingly different objects are identified and are colored 1 and 2, 

respectively.  At row 4, a third object is detected which doesn't have any 

vertical or horizontal connections to objects 1 and 2 and so is colored with 

another color, no. 3.  The coloring of these apparently distinct objects continues 

through row 9.  Feature Extractors 1, 2, and 3 are accumulating features for 
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each of the three objects and their respective close out clocks are running. 

At pixel (10.5) a vertical connection between different colors (1 and 3) is 

noted.  Since rows dominate, color 1 is placed in pixel (10,5).  We are now 

alerted that Feature Extractors 1 and 3 will be combined in the Scratch 

Feature Extractor at some time in the future and we want to remember this 

equivalence.  Since RAM structures are, so far, alien to the CCD world, 

we shall use a Switching Matrix as shown in Figure 4.3-22.  A connection is 

formed between row 1 and column 3.  Then every time color 3 is encountered 

SUBORDINATE     COLORS 

12   3       ... 

1     
Dominate 

Colors 
2 

3 

Figure 4,3-22.   Switching Matrix 

in the object region, the 3 line is pulsed and the signal exits the Switching 

Matrix on row color 1.  At pixel (10,6) for example, we paint color 1 because 

there is a horizontal connection with pixel (10,5) and column color 3 leaves the 

Switching Matrix on the row color 1 line.  At pixel (10,9),  an apparently new 

object is encountered and color no. 4 is introduced.  At pixel (10,11), a 

vertical connection between color 4 and 3 is detected and color 4 dominates. 

Color 3 is already latched to color 1, so the connection establishing color 4 

as dominating color 1 is made in the switching matrix as shown in Figure 4.3-23. 
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Figure 4.3- 23.  Switching Matrix 

Color 1 is a dominate color with respect to color 3 and a Subordinate Color 

with respect to color 4. At pixel (10,12), color 4 is painted in because 

of the horizontal connection with pixel (10,11).  At pixel (10,13), color 3 

is closed out as shown by the symbol C3 in Figure 4.3-21.  This means that 

an entire horizontal image has been traversed since the last color 3 was 

entered.  There is a clock associated with each Feature Extractor which 

keeps track of the time since the last entry to that Feature Extractor.  The 

clock turns over at the rate that the pixels are processed as the Coloring Operator 

moves along a line of image.   When the clock equals the number of pixels in 

a line of  image, the color is closed out.  To close out a color, e.g. color 

no. 3,  Clock no. 3 sends a pulse to the Switching Matrix which identifies 

color no. 1 as the other part of the equivalence.  Since color no. 3 is closed 

first, it will be merged into color no. 1.  This is accomplished by entering 

the contents of Feature Extractors 1 and 3 into the Scratch Feature Extractor 

to combine them, and placing the results in Feature Extractor 1.  Then the 

connection between colors 1 and 3 in the Switching Matrix is opened and color 3 

is ready to be used again.  The remainder of row 10 is straight forward. 
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At row 11, reference to the Switching Matrix places color 4 in pixel 

(11,1).  Also at pixel (11,7), color 1 is closed out, the result placed in 

Feature Extractor no. 4, and the connection between colors 1 and 4 in the 

Switching Matrix is opened.  Color 4 continues to be painted through row 11, 

including pixel (11,16) where row colors dominate column colors.  And a connection 

between colors 4 and 2 is established in the Switching Matrix.  Color 4 is 

painted at pixel (11,21) because of this connection.  At pixel (11,23) color 2 

is closed out and the results placed in the Feature Extractor  of color 4.  The 

remainder of the object region is straight forward.  The Switching Matrix, 

connections  (•)  and disconnections W  , and the equivalence statements 

are shown in Figure 4.3-24. 
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Figure 4.3-24. 
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e.  Switching Matrix 

The Switching Matrix is shown in Figure 4.3-25. 
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Each color data element, analog signal occupying one CCD site, is 

quantized into a K element vector.  Only the highest subscript vector element 

is retained for each color.  The highest element retained enables one vertical 

line of the K lines connected to the Color Line Decode Module.  Each vertical 

line from the CLDM is connected via a switch to only one horizontal line going 

to the K Feature Extractors.  Normally the K  CLDM line is connected to the 

K  horizontal classifier line. 

Quantizing the analog color signal requires a Quantizer described 

previously in regard to the Median Filter.  Enabling the particular vertical 

line to the CLDM is not difficult since the largest non zero element is 

followed by a zero element unless it is the K  element, in which the K-l 

and K  elements are both ones.  Figure 4.3-26a shows an enabling circuit 

for the vertical CLDM lines. 

B- 

u 
K 1 

Figure 4.3-26a.     Enable Circuit 

77-0545 V« 
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The color element corresponding to the vertical CLDM line is fed directly 

to the AND gate.  The complement of the next higher element is also fed to the 

AND gate; this gives the non-zero, zero combination.  For the K  line, the 

K-l element is fed uncomplemented to the K  AND gate.  This is the normal 

mode of operation for the Switching Matrix; next we consider the case when 

portions of the same target have different colors. 

We will show how the outputs from vector A and B modules can modify 

the diagonal interconnection between the CLDM and the K Feature Extractors. 

A switch is located at each intersection between the horizontal and vertical 

lines in Figure 4.3-25.  The function of this switch is to repaint each 

target into a single color and this switch will be reset when the color 

has been closed out.  For example, if vector A has color i, 1 <     i _<  K, and 

vector B has color j, i  <    j _< K, i^j, only the i, j latch switch is enabled. 

Once this happens, all the data elements to be painted with the j   color 

will be painted with the i  color.  The i and j elements will be channeled 

to a single Feature Extractor i, also.  This color merge operation is 

achieved by connecting the i and j outputs from the CLDM unit via switches 

to the ith Classifier. 

To a large extent, then, merging different colors within the same target 

can be achieved by selecting appropriate switches and connecting them at the 

intersection between the vertical and horizontal lines of Figure 4.3-25. 

A diagram of such a switch is shown in Figure 4.3-26b.  Two types of switches 

are required for the Target Sorter; switches on the main diagonal will be 

different from those placed off the main diagonal.  From the switch configu- 

ration shown, only one switch will be on in any given column.  Therefore, at 

most only one Feature Extractor line will be connected to each vertical line. 
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Figure 4.3-26b.  Switches within the Target Sorter 

The latch shown in Figure 4.3-26b is reset such that initially only the main 

diagonal switches can be enabled.  A reset input to each i, j latch switch 

will be controlled by the outputs from the vector A and B modules shown in 

Figure A.3-25.  Each module will only contain one element with the highest 

subscript like the vector in the CLDM module.  Existence of non-zero elements 

in the vectors A and B modules will only occur when the Coloring Operator 

detects two adjacent colors during the target painting.  That is, when 

A. ^ Bl ^ ° a condition which represents multi-color in one target.  A flag 

for such a condition is provided by the CO and will enable the A and B 

modules for one clock period.  The set inputs to the latch switches are 

gated such that only one latch is enabled for any combination of vectors A 

and B. 
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Once the j   color has been closed out, it will reset the j   line such 

that all latching switches connected to the j   line (excluding the j 

CLDM switch) will be open.  Moreover, the j   color will be returned to 

the Color Storage and Memory Module located in the Color Operator Unit. 

4.3.6  Super Slice 

Suppose an image has been processed through the Non Maximum Suppression 

and Connected Components Algorithms independently as seen in Figure A.3-27. 
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Figure 4.3-27a.  Non Maximum 
Suppression Output 

Figure 4.3-27b.  Connected 
Component Output 

Region A has a perfect score:  every pixel of maximum gradient is matched as a 

perimeter point of A.  Region B matched 23 points out of 26 possible gradient 

points but it also produced 5 perimeter points which were not matched by 

gradient pixels.  This match is done, in parallel, for each of the threshold 

levels. 
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4.3.7  Feature Extraction 

A tentative list of features which Maryland will use for classification 

includes perimeter match, area, perimeter extent, average gray level, and 

maximum height and width.  The purpose of this section is to didcuss the 

implementation of a feature extractor. 

At this point in the data flow, we may assume that the object has been 

segmented and the existence of more than one color within the object has been 

resolved.  Also the object in its entirety has been sent to one of the K 

Feature Extractors discussed previously.  Maryland has produced a tentative 

set of features thus far so the hardware effort will be limited, at present, 

to those features.  We shall continue with the assumption that the image 

is entering the Feature Extractors one horizontal line at a line, the 

processing is moving down the image, and from right to left. 

a.  Area 

Assume an object shape such as that shown in Figure 4.3-28. 

Figure 4.3-28.  Arbitrary Target 

The area of the object can be obtained simply by summing the number of pixels 

within the target; in this case the area is 48 pixels.  The Area Feature 

Extractor then is seen in Figure 4.3-29. 
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Figure 4.3-29.  Area Feature Extractor 

b.  Perimeter 

Both the Perimeter Match and Extent may be considered together.  Each 

pixel has eight neighbors; a perimeter point is defined as having at least 

one zero neighbor, similarly an interior point is defined as having eight 

non-zero neighbors.  Recall that these definitions apply to the binary image 

which was developed prior to the Connected Components Algorithm.  However, 

in the Classifier Module no exterior neighbors would be allowed to enter, so 

the test of a perimeter pixel may be conducted as the complement of an interior 

target pixel.  That is, only target pixels enter the Classifier; these target 

pixels which are not interior target points must be perimeter target pixels. 

The Perimeter Feature Extractor would consist of three lines of memory, 

each 525 pixels long corresponding to the image frame width.  The center 

pixel would be the location of the pixel being examined for neighbors. 
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An interesting problem is horizotally aligning  these three lines of memory 

within the Classifier in the same way they are aligned in the image.  This 

can be accomplished by using three lines of memory forming a serpentine and 

injecting a bit into the delay lines for the appropriate color location.  Non 

destructive readouts form the 3 x 3 moving neighborhood as the pixels shift 

through as shown in Figure A.3-30. 

14  13  12  11  10 9  8  7  6  b  4   3  2  i 

Figure 4.3-30a.     Image 
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Figure 4.3-30b.  Serpentine Implementation 
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The second to last pixel in the second row, X , is always the pixel position 

being tested as a perimeter point.  This implementation does not have to make 

special allowances for pixels located on the edges of a target.  This is the 

same technique described in the second and third quarterly reports for forming 

the moving windows for Gradient Operator, Median Filter, and Non Maximum 

Suppression.  We can AND the neighbors of X , complement the output and AND it 

with X^  If the output of the first AND is zero, then one of XT's neighbors 

is zero and X is a perimeter point.  See Figure 4.3-31 for the logic.  This 

is fed to a summer and the total number of perimeter points for a target 

is produced.  For the Perimeter Match, the important thing is to clock the 

O if X  Inienoi 

Figure A.3-31.  Perimeter Point Logic 

image of edges at the same rate that the perimeter extent of the same target 

is determined.  Then X,^ is compared with its geometric counterpart in the 

edge domain, i.e., at the same x, y position in the image.  Both are fed 
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to an AND gate and if non-zero, will increment another summer which keeps 

track of the Perimeter Match Score. 

c.  Maximum Target Height and Width 

This has to do with keeping track of the maximum target excursions in 

x and y.  For the maximum x extent suppose we use the same three delay line 

memory which was used for Perimeter Match.  We further assume a more 

complicated object as shown in Figure 4.3-32.  The left most site of the second 

row and the complement of the right most site of the last row are ANDed. 

If a one comes from the AND gate the summer is incremented by one.  Essentially, 

we count the number of pixels in the first row of the image and then determine 

the amount of extension in the following rows and add it to the first sum. 

Note that number indicated by the summer corresponds to a count of the number 

image columns in the first rows. 

The y extent of the image can be determined by counting the number of 

pixels passing through the three line delay and dividing the number of pixels 

per line. 

d.  Average Gray Level 

This involves clocking the Median Filtered image at the same time the 

color elements are clocked through the Feature Extractor.  The gray level 

sum is obtained and divided by the area obtained earlier by the Feature 

Extractor.  The quotient yields the average gray level. 

4.3.8  Data Flow 

The Median Filter, Gradient and Non-Maximum Suppression Operators are 

calculated for small windows which move over the entire frame.  These 

windows are formed by parallel shifting one line of image from the TDL array 

into a parallel in, Serial out Shift register (Figure 4.3-33a).  This register 

and others then forms a serpentine delay through which the pixels are shifted. 
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Figure 4.3-32a.     Object 
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Figure 4.3-32b.  Tapping First Image Row 

Figure 4.3-32c.  Tapping Second Image Row 
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Figure 4.3-32d.  Tapping Third Image Row 
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Figure 4.3-33b.  Details of Serpentine Delay Line 
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Non-destructive readouts form the regions comprising the appropriate 

window (Figure 4.3-33b). 

It appears that the computation speed of the Median Filter and Gradient 

Operator is conservatively estimated at 50-100 kHZ, hence a parallel 

organization of the focal plane (see Figure A.3-34) is necessary for a 1 

megapixel/sec. data rate.  Suppose we divide the PI/SO register immediately 

below the focal plane into 20 vertical sections, each approximately 34 pixels 

wide, and each with its own serpentine CCD delay line as seen in Figure 4.3-35. 

If the image is 640 pixels wide, we divide the register into 20 sections of 

approximately 34 pixels each to avoid problems associated in calculating 

medians and gradients along the edge of an image.  Each vertical section is 

eight stages long to accommodate the Gradient Operator, which requires eight 

lines of storage, and 34 pixels wide for a total number of 272 shifts at 

50 kHZ.  This appears to avoid numerical integrity problems.  Performing 

the three algorithms consecutively requires three separate moving windows 

and clocks to control the non destructive readouts for each.  The Median 

Filter Algorithm requires 5 stages of delay, the Gradient Operator requires 

8 lines (stages), and the Non Maximum Suppression Algorithm requires 7 lines. 

The series arrangement is shown in Figure 4.3-35.  The outputs from Non 

Maximum Suppression feed the SuperSlice Algorithm.  Referring to the System 

Flow Chart (Figure 4.3-1), the other path requires that the original image 

be thresholded at g-, g~ ... g values.  The computation of g-, g«,...g 

will require some knowledge of all the gray level values within a frame, 

hence frame storage can be expected, or thresholds determined from the 

two prior frames will be used for the present frame.  In any event, having 
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Figure 4.3-34.  PI/SO and Serpentine in Parallel 

4-49 



nn ii 

G 

C 
x 

<i 
MF2 

x 
i_>i 

TDI Array 

PI/SO 

( 

_j } 

iMF 10 

Serpentine Delay 
)      5 Stages 

^y!edian Filter 

Serpentine Delay 
8 Stages 

J Gradient Operator 

■\ 

Serpentine Delay 
\      1 Stages 

D   J 

Non-Maximum Suppression 

77-0189 V 10 

Figure 4.3-35.  Focal Plane Data Flow 

4-50 



obtained g , g , ... g , the entire frame can be thresholded, by examining 

the rows in parallel, and Connected Component analysis started, as in Figure 4.3-36, 

The frame is clocked out of storage, one pixel at a time, and each pixel is 

thresholded in parallel forming frames Fg , Fg , ... Fg .  Similarly, the 

Connected Component Algorithm is performed in parallel with the required 

one line delay for each.  To avoid additional storage, the SuperSlice Algorithm 

will be done as the output from Connected Components becomes available and 

the scores cumulated. 

4.3.9  Storage Requirements 

From Figs. 4.3-34 and 4.3-35, it appears that 20 stages of serpentine delay 

are necessary, each stage is approximately 34 pixels long and divided into 20 

separate sections for a total of 400 delay lines.  To achieve a 1 megapixel/ 

sec. speed, we are conservatively talking about 20 Median Filter Processors, 

20 Gradient Operator Processors, and 20 Non-Maximum Suppression Operators 

for a total of 60.  Assuming five thresholds, as an example, an additional 12 

lines of delay are required, plus five Connected Component Processors. 

4.4  Hardware Fabrication 

4.4.1  Algorithms 

In previous work, we have described the hardware implementation of a 

number of algorithms.  In this section we shall take that work a step further 

and consider the fabrication of these implementations.  Specifically, we shall 

consider chip size, cryogenic problems, speeds, yields, and power consumption 

relevant to the Gradient Operator, the Median Filter, Serpentine Memory, 

Non-Maximum Suppression, and Connected Components Elements. 
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a.  Gradient Operator 

A major assumption in the analysis is that the inputs for the Gradient 

Operator (i.e., A, B, C, and D) will be obtained from a separate IC chip which 

will be a part of the serpentine memory module.  The structure of this module 

will be addressed in another section. 

The size of the Gradient Operator chip will be deduced by assigning 

real estate to each operation performed by the Operator.  A key operation is 

the absolute subtraction module (ASM) which obtains the absolute difference 

between two inputs and yields a charge representing that quantity.  Each 

difference CCD structure will nominally require a channel 1.2 mils wide? four 

input channels are needed to provide four charge packets, two representing 

| A - B | and two representing! C - D   .  The length of each ASM will be 

4 mils,  a size sufficient to provide a readout structure necessary to drive 

the second stage of the Operator.  The second stage selects which output 

| A - B  | or | C. - D  | is the largest gradient of the i th pixel location. 

Combining the real estate requirement for the first and second stages, we 

calculate a chip size of 8 mils x 10 mils. 
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We assume a four phase gate construction; a smaller number of phases 

(which requires less chip area) could be used; however,speed-charge handling 

capacity and ease of fabrication favors four phase construction. 

The structure advocated is exclusively based on MOS FET and CCD 

technology.  Both MOS FET and CCD structures exhibit improved performance 

at cryogenic temperatures greater than 30°K.  At very low cryogenic temperatures 

(>. 30°K), the performance of MOS CCD structures begins to show significant 

degradation,   Relative to room temperature performance, 

experiments have shown that with cryogenic temperatures we should obtain 

higher operational speeds and lower noise figures.  The improved performance 

is attributed to increases in mobility resulting from lower levels of phonon 

scattering of the signal carriers. 

The fabrication yield depends on chip size and the number of steps. 

The process is very similar to that for making surface channel CCD and we 

estimate six photolithographic masks.  Cognizant of these similarities, we 

expect a yield of better than 50%.  The variables which will influence the 

final chip configuration will be speed, charge handling requirements and 

resolution (uniformity).  Our present design is conservatively aimed at a 

speed of 100 kHZ.  Higher speeds are possible, but increasing the operating 

speed from 100 kHZ to 1 MHZ will require special and more difficult structures. 

Power consumption of the Gradient Operator will depend on the operating 

frequency and checking voltages. Conventionally, the power consumed by a CCD 

type structure is expressed as 

P - CV2 f N 
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where N is the number of gates, C is the capacitance of each gate, V is the 

clocking voltage and f is the operating frequency.  Computing the power 

requirements we obtain less than 10 milliwatts.  This level of power consumption 

is exclusive of the power requirements of the clocking circuitry required to 

operate the Gradient Operator. 

b.  Median Filter 

In the second quarterly report, Maryland reported on the significance 

of the Median Filter Operator and Westinghouse described an embodiment. In 

this section, we shall consider aspects pertinent to fabrication. 

The MFO chip as considered below will not include peripheral clocking 

circuits or a structure for summing the output from the serpentine CCD delay. 

We assume an MFO operating on 25 pixels located within a moving window; 

provisions for obtaining the 25 pixels will be built into the CCD serpentine 

delay structure in the form of non-destructive readouts.  Each data element 

(pixel) is assumed to have a dynamic range equivalent to a 32 level grey 

scale. 

The size of the chip is determined primarily by the number of pixels 

and grey levels.  The proposed MFO is required to operate as a moving window 

device which requires a CCD memory capable of storing and shifting 25 data 

elements each of which is quantized within a 32 level grey scale.  A bank 

of CCD memory registers with 25 x 32 storage locations can be achieved by 

a 64 mil by 64 mil module.  Included in this estimate are areas for 

incorporating output and input structures to the CCD memory. 
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Another major block of the MFO is the sorting module in which the data 

elements are arranged according to size.  This requires a bank of 32 CCD shift 

registers which are 25 elements long and each row is capable of being inde- 

pendently shifted left or right.  An area 100 mils wide by 64 mils long is 

sufficient. 

Finally, the area required for controlling the clocks operating the 

sorting module is estimated to be 100 mils by 2 mils. 

Summing the different component areas comprising the MFO, we arrive at 

an area estimate of 100 mils by 128 mils. 

All the elements used in modelling the MFO are based on field effect 

phenomena, hence we expect improved performance at cryogenic temperatures in 

accordance with experimental observations.  As described in the Gradient 

Operator section, we expect improvement in bandwidth and noise reduction. 

The size of the MFO (128 x 100 mils) represents a large scale integration 

device and significant complexity will be encountered during fabrication and 

test.  We calculate that eight mask levels will be required.  The yield, 

dependent on chip size and the number of masking steps,is estimated to be 5%. 

Required power will be larger than that consumed by a conventional CCD 

device; the demand for more power comes from the active logic devices used 

for clock control (shift left or right) functions.  Generally, power consumed 

depends on-operating speed, component cost, and system layout.  Assuming an 

operating speed of 100 kHZ, the MFO will require less than 100 miliwatts of 

power ■ 
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c.  Serpentine Delay 

A large number of delay elements are required for focal plane processing; 

the elements must have  large memory capacity, good transfer efficiency, and 

non destructive readout structures. 

The serpentine deployment shown in Figure 1-6 requires a large number of 

transfers which causes degradation in the modulation transfer function (Ml?). 

This negative effect can be reduced by segmenting the image into several 

columns, each of which will be processed in parallel with the other columns. 

Such a segmentation not only reduces the number of CCD transfers per delay 

element but reduces the operating speed.  We postulated an algorithm operating 

speed of 100 kHZ based on hardware implementations.  This led to a division 

of the IR image into 10 columns, each 68 pixels wide.  From Figure A.3-36, it 

is seen that Median Filter requires five (5) lines of delay, Gradient Operator 

requires eight (8), and Non Maximum Suppression requires seven (7) for a total 

of 20, since the algorithms operate sequentially.  The total number of shifts 

is 1360 per column.  At a clock frequency of 100 kHZ, numerical degradation 

in the order of 20A will occur,which is probably too high.  The MTF can be 

reduced In several ways. 

The modulation transfer function is a function of the input signal 

frequency, the frequency of the shifts (clock frequency), the number of shifts, 

and the transfer efficiency.  The more practical avenues of reduction are 

clock frequency and the number of shifts; we can double the number of operators 

to 20 each, and halve the clock frequency and number of shifts  to 50 kHZ 

and 680, respectively.  This may produce an improvement to 10% degradation, 

but this number would have to be confirmed experimentally.  Of course this 
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approach Increases the total chip area which is still small and the external 

clocking circuitry.  Operating at cryogenic temperatures will probably increase 

the transfer efficiency somewhat.  Further, the input frequency can be band- 

limited to decrease the MTF.  Using the 20 column segmentation, each 34 pixels 

vide, a total of 680 shifts are required to perform the Median Filter, Gradient 

Operator, and Non Maximum Suppression Algorithms at a 1 megapixel/sec. rate. 

Moreover, surface channel CCD's are suitable for this task within the 

defined operating parameters, and the advantage of these devices is realizing 

the non destructive taps.  These taps are necessary in extracting the ap- 

propriate pixels for the moving windows discussed in Section 1.3 and the 

second quarterly report. 

The size required for achieving a memory 680 elements long is 1000 

square mils if four phase clocking is employed. Hence for 20 columns we 

will require a silicon area 1000 mils long by 20 mils wide. 

Operation of the memory at cryogenic temperatures will present no 

problems since its construction is similar to the other focal plane signal 

processing components.  Considering the size of this memory chip we expect 

a yield of about 5Z.  The clocking circuits required for the memory module 

operation are not included in the area calculations. 

General Observations 

In this report we have considered the physical parameters of the focal 

plane signal processing circuit elements.  In our opinion, no signal processing 

operation defined and discussed contains any inherent characteristics which 

will prevent fabrication.  However, the number and size of the required IC 
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modules is considerable.  Integration of all the aforementioned elements in 

a single large integrated circuit is a high risk effort.  Development of 

each single IC block first should provide sufficient test vehicles and data 

needed to evaluate each signal processing component.    Such data should be 

obtained before any large scale integration of all the focal plane signal 

processing is undertaken.    This approach will result in the most efficient 

method leading towards LSI focal plane signal processing. 

d.  Non-Maximum Suppression Operator 

Estimating the physical size of the NMSO will be consistent with the 

design rules followed for estimating the fabrication of primitive operators 

reported in previous quarterly reports.  It should be restated that the 

estimates provided are preliminary and adjustments are expected when chip 

layouts are made.  Estimation will be made by first decomposing the operator 

into its components and calculating the physical dimensions of each port. 

The NMSO is made up of several components.  A serial input/parallel 

output CCD structure will be used in quantizing the analog signals injected 

into the NMSO.  The si:^e of this component will !>*■ S mils x 100 mils wide. 

The output from the quantizing modulo will go into u   BOrlei which will be 

13 mils by 100 mils in size.  The output from the sorh-i will he injected 

into a CCD compare register which will compare two signals.  One signal i- 

the largest, x, of the neighboring gradient pixel a; i he ot IHM is gradient 

pixel of interest, y, (see Figure 1-2 in the Jan. 31, 1977 report).  The 

difference output will control the NMSO output according to the following 

rule 
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0    y < x 

NMSO Output = 

y     y > x 

Totaling the area required for each NMSO component, we obtain an area of 100 

mils by 25 mils.  This chip will have MOS structures.  We estimate a 25 

milliwatt power drain by the NMSO neglecting peripheral clocking and logic. 

A 10% yield for this chip is predicted. 

e.  Connected Components Algorithm 

The Coloring Operator consists of several blocks; the coloring logic, 

the color delay line, the equivalence operator, and the color bank. Fabrication 

estimates have been discussed and obtained for these elements in the fourth 

quarterly report based on ten (10) colors.  We now extrapolate those estimates 

to handle one hundred (100) colors. 

Our previous estimate for the coloring logic was 10 mils by 50 mils. 

Laying these modules side by side and end to end, yields an area of 100 mils 

by 50 mils neglecting space for connections. The logic will be MOS structure 

to maintain compatibility with other structures.  A color delay line will be 

20 elements wide by one horizontal TV line long.  Consistent with the area 

required for previously described serpentine memory chips, we predict a 400 

mil x 300 mil size.  The color bank will be very similar to the Median Filter 

already described.  Accounting for the number of quantization levels, we obtain 

a 250 mil x 250 mil chip.  It should be emphasized that the structure of the 

color bank chip will be facilitated by the development work on the Median 

Filter. 

The switching matrix in the Equivalence Operator is estimated to require 

less than a 10 mil x 10 mil area for each switching mode leading to a total 

size of 1000 mils x 1000 mils. The peripheral logic for controlling the matrix 
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will be two modules 1500 mils x 1500 mils in size. The total area of the 

Connected Component algorithm is obtained by laying the above elements side 

by side yielding dimensions, thus far, of 2500 mils x 2500 mils. There are 

100 Feature Extractors with a unit size of 12.5 mils x 12.5 mils yielding a 

area of 1250 mils x 1250 mils. Including the Feature Extractors, the total 

area of the Connected Components Algorithm is approximately 3750 mils x 3750 

mils or 3 3/4 inches x 3 3/4 inches. 

The complexity of the Connected Components Algorithm and its size is 

not insignificant. Development should proceed in steps such that individual 

components are fabricated separately. A hybrid configuration can be realized 

by interconnecting all the component chips.  With experimental evaluation and 

testing, progress towards a consolidated version can be realized.  The power 

and yield for the operation and fabrication of the Connected Components 

Algorithm is difficult to estimate. An alternate approach is to estimate 

these parameters for the individual components which are comparable in size 

and complexity to the primitive operators already discussed.  Accordingly 

we feel that the power consumption and yield for each component will be about 

100 - 300 milliwatts and approximately 10% respectively. 
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4.A.2 Focal Plane Area 

This section presents a preliminary estimate of the focal plane area 

occupied by the portions of the cueing system developed thus far, i.e., the 

image has been smoothed (Median Filter), edges obtained (Gradient Operator), 

edge width reduced (Non-Maximum Suppression), the image has been segmented into 

targets (Connected Components), and features extracted (area, height, width, 

perimeter extent, average gray level).  The estimate is preliminary in the 

sense that none of the clocking circuitry has been included in area estimates 

for the operators.  The reason is that methods by which the algorithms will 

handle edges of the image frame has not been specified.  The estimate does 

not include the Classifiers. 

Assuming that the focal plane is divided into 20 columns, Table 4-1 

shows the number of processors required for a system data rate of 1 megapixel/ 

sec.  It also shows the geometric area required for each processor and an 

estimate of the area as defined above.  The area thus far is 11^ inches x 

7h  inches.  The volume equivalent is 3 inches x 3 inches x 6 inches. 
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4.A.3 Chip Development 

The Smart Sensor Project is scheduled to last for 21 months with a key 

circuit selected at the one year mark and constructed in the last nine months. 

We wanted to select a circuit which was common to as many algorithms as 

possible. 

a.  Development Review 

Figure 4.4-1  shows the algorithms developed by Maryland 

and the functions which are required by each algorithm. A perusal shows that 

the sorter function occurs in four out of the five algorithms and is the one 

we selected. 

ALGORITHM 

Gradient Operator 

Median Filter 

Non Maximum Suppression 

Connected Components 

Histogram 

FUNCTION 

Absolute Difference Comparison 

Quantizer 
Sorter 

Quantizer 
Sorter 
Absolute Difference 

Quantizer 
Sorter 
Coloring Operator 

Quantizer 
Sorter 

Figure 4.4-1. Algorithm Implementation by CCD Function 

Several versions of the sorter were put in production runs at the 

Westinghouse Advanced Technology Laboratory.  Both version assume that the 

analog signal has already been quantized into a thermometer code.  A physical 

analog is shown in Figure 4.4-2 where a container is filled with an amount of 

water (charge), proportional to the signal voltage S. and then the contents 
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are poured into a tray of quantized bins. When a bin is filled with water, 

the water flows over the top into the next bin.  The volume of water is divided 

between a number of discrete bins. 

mrarxb** i i  i 

770545 V 16 

Figure 4,4-2.  Flow Analogy to Quantization 

One version of the sorter takes the charges, q, residing in each bin 

and receives them in parallel as in Figure 4.4-3. 

JU 1 
$ P°2 

t LHW BG 

TW 

TG 

Figure 4.4-3.  CCD Sorter 

Thus, there is q amount of charge shifted from bin b. to channel I , q amount 

of charge shifted from bin b- to channel I. and so on.  By means of gate pg , 

pg2, and pg , the contents pf channels I. through I., are shifted in parallel 

into the large holding well LHW.  The large holding well is partitioned into 
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N channels also.  Consider a numerical example; a sequence of numbers 4, 7,5 

Is quantized at q = 1 so that 4, 7, and 5 bins respectively represent each 

number.  Then  Figure 4.4-4 shows the sequence as it goes through the quantizer, 

the b_, b_, .... b bins, the I., In, .... I  channels and the large holding 
1  z       n 1  I n 

well.  It also shows the removal sequence from the large holding well and the 

remainder at each stage.  The numbers are removed in order of decreasing 

magnitude 7, 5, 4 which shows the numbers have been sorted by magnitude. 

The other version of the sorter is shown in Figure 4.4-5.  Here the sorter 

consists of individually controlled CCD shift registers.  Each register is 

enabled by a clock pulse and the presence of a charge quantum, q.  The lower 

portion of Figure 4.4-5 shows the random sequence 3, 1, 5, 2 of numbers entering 

the sorter.  At stage 2, the first register will shift only.  At stage 3, all 

five registers will shift and note that the data is then arranged in decending 

order. 

We has been using surface channel CCDfs to produce image primitives such 

as produced by the Median Filter and Non-Maximum Suppression Operators because 

of wider dynamic range and lower data rate requirements.  However we found that 

the Connected Components Algorithm could also be implemented with buried channel 

CCD devices producing a smaller package so we amended the chip feasibility 

program to include buried channel devices also.  The second version of the 

sorter was done with surface channel CCD's and the first version was in buried 

channel.  The buried channel device was achieved by ion implantation in the 

surface channel structure.  Probe tests showed that the yields were not high 

enough to continue processing the buried channel wafers, so they were dropped. 
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I    Channels 
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Large Holding Well 

4    q   q   q   q 

4,7     2q   2q   2q   2q    q    q    q 

4,7,5    3q   3q   3q   3q   2q    q    q 

First Removal 

q    q    q    q    q    q    q 

Remainder 

2q    2q    2q    2q     q 

Second Removal 

q    q    q    q    q 

Remainder 

q   q   q   q 

Third Removal 

q   q   q   q 

Remainder 

Figure 4.4-4.  Sorting Sequence 
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Figure 4.4-5.  CCD Sorter Fabrication 

The surface channel devices will be used in the demonstration.  We could not 

have met the time schedule if we had started the buried channel devices from the 

ground up as was done successfully on other programs.  For the purposes of 

this project, amending the lower risk surface channel masks seemed to be a 

reasonable way to produce both surface and buried channel sorters. 

Figure 4.4-6 shows a wafer of the buried channel devices.  One portion 

of the demonstration unit is shown in Figure 4.4-7, with the shift registers 

mounted in place.  The ten shift registers are seen at the top of the unit 

and ten thumbwheel switches are shown below.  These thumbwheels represent the 

unsorted numbers which the sorter must rearrange in descending order.  The 

observer may dial in any arrangement of numbers which he wishes.  The outputs 
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Figure 4.4-6.  Buried Channel Wafer 

Figure 4.4-7.  Demonstration Unit 

and inputs, i.e., the unsorted and sorted arrangements are shown on a two-trace 

oscilloscope. 

We8tinghouse IR&D accounted for 70 cents of every dollar spent on the 

Smart Sensor Project. 
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b.  Feasibility Demonstration 

The demonstration unit and a two-trace oscilloscope were exhibited at the DARPA 

Image Understanding Symposium in September of 1977 at Stanford University in Palo Alto, 

California.  The symposium participants were encouraged to dial in their own 

set of random numbers on the thumbwheel switches and observe the ordered 

outputs.  Figure 4.4a, b, c, and d are typical outputs of the two-trace 

oscilloscope seen at the Symposium.  The random sequence is shown in the left 

half of the trace and the ordered sequence in the right half. 

Figure 4.4a.  Sorter Display 

Figure 4.4a, is a sequence of 6, 0, 8, 3, 4, 5, 5, 2, 7, 3 arranged into an 

ordered sequence of 0, 2, 3, 3, 4, 5, 5, 6, 7, 8.  Figure 4.4b is a sequence 

of 4, 4, 4, 4, 4, 5, 4, 4, 4, 4 arranged in an ordered sequence of 4, 4, 4, 

4» 4, 4, 4, 4, 4, 5.  Figure 4.4c is a sequence of 4, 7, 4, 5, 4, 1, 4, 4, 3, 4 

arranged in an ordered sequence of 1, 3, 4, 4, 4, 4, 4, 4, 5, 7.  Figure 4.4d 

is a sequence of 4, 4, 4, 4, 4, 3, 4, 4, 4, 4 arranged in an ordered sequence 

of 3, 4, 4, 4, 4, 4, 4, 4, 4, 4.  The unit was also demonstrated at the Night 

Vision Laboratory,  Ft. Belvoir, Va. on November 28, 1977. 
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Figure 4.4b.  Sorter Display 

Figure 4.4c. Sorter Display 
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Figure 4.4d.  Sorter Display 
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* 

4 . 5  Conclusions and  Recommendations 

This report has shown that the Smart Sensor can be implemented 

with CCD technology and in a smaller package than implementation with 

digital techniques. However, it is also evident that the CCD package 

package cannot be accomodated on the focal plane. 

The total area estimate is 11 1/4 inches by  7 1/2 inches . If 

3 inch by 3inch modules were employed with 1/2 inch centers, the volume 

dimensions would be 3 inches  by  3 inches by 6 inches.  This volume 

has positive implications for missiles and other airborne platforms, in 

general. 

The next step in proving feasibility involves building some of the 

modules and checking them for numerical integrity, size, speed, and power 

consumption.  These modules, e.g. Median Filter would be hybrid packages 

in the first build, and the cloc'ing circuitry should be included on the 

chip.  Another item of particular interest is the Connected Components 

Algorithm with the switching matrix and peripheral control  logic. Estimates 

of ultimate size for the monolithic elements would be necessary as well as 

estimates on the grouping of algorithms within the monolthic packages. 
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5.  Publications 

In accordance with contract provisions, the university of 

Maryland produced seven Quarterly Technical Management Reports, 

a First Quarter Report, and three Semiannual Reports.  West- 

inghouse, as subcontractor, prepared six Quarterly Technical 

Progress Reports.  In addition, the following sixteen 

Computer Science Technical Reports,     twelve Image Under- 

standing Workshop papers and five other proceedings papers 

were produced with the support of this contract, 

a)  Computer Science Technical Report Series 

Durga P. Panda, "A Method of Adaptive Smoothing and Edge 

Enhancement", TR-504, February 1977. 

Durga P. Panda, "Segmentation of FLIR Images by Pixel 

Classification", TR-507, February 1977. 

David L. Milgram, "Region Tracking Using Dynamic Programming", 

TR-539, May 1977. 

David L. Milgram, "Constructing Trees for Region Description", 

TR-541, May 1977. 

Durga P. Panda, "Statistical Analysis of Some Edge Operators", 

TR-558, July 1977. 

Durga P. Panda, "Statistical Properties of Thresholded Images", 

TR-559, July 1977. 

Robert A. Hummel, "Edge Detection Using Basis Functions", 

TR-569, August 1977. 

Yasuo Nakagawa and Azriel Rosenfeld, "A Note on the Use of Local 

MIN and MAX Operations in Digital Picture Processing", 

TR-590, October, 1977. 
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Shmuel Peleg,"Iterative Histogram Modification, 2", TR-606, 

November 1977. 

Charles R. Dyer and Azriel Rosenfeld, "Thinning Algorithms 

for Grayscale Pictures", TR-610, November 1977. 

Kenneth C. Hayes, Jr., Martin Herman, and Russell Smith, 

"PDP-11 Image Processing Software", TR-612, December 1977. 

Gilbert B. Shaw, "Local and Regional Edge Detectors:  Some 

Comparisons", TR-614, December 1977. 

David L. Milgram and Martin Herman, "Clustering Edge Values for 

Threshold Selection", TR-617, December 1977. 

David L. Milgram and Daryl J. Kahl, "Recursive Region 

Extraction", TR-620, December 1977. 

Yasuo Nakagawa and Azriel Rosenfeld, "Some Experiments in 

Variable Thrsholding", TR-626, January 1978. 

Martin Herman, "A System for Control Structure Implementation 

for Image Understanding", TR-646, March 1978. 

b)  DARPA Image Understanding Workshops:  Proceedings 

1.  April 20, 1977. Minneapolis, Minnesota. 

David L. Milgram, "Region Extraction Using Convergent 

Evidence", pp. 58-64 

Durga P. Panda, "Segmentation of FLIR Images by Pixel 

Classification", pp. 65-70 

Thomas Willett and Nathan Bluzer, "Automatic Target Cueing on 

the Focal  Plane", pp. 87-88 

Azriel Rosenfeld, "Algorithms and Hardware Technology for 

Image Recognition — Project Status Report - March, 1977," 

pp. 98-100. 
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2. October 20,21, 1977.  Palo Alto, California 

Azriel Rosenfeld, "Relaxation Methods - Recent Developments", 

pp. 28-30. 

T. Schutt, G. Borsuk and T. J. Willett, "A CCD Histogram- 

Sorter:  Feasibility Chip", pp. 7-8. 

David L. Milgram, "Progress Report on Segmentation Using 

Convergent Evidence", pp. 104-108. 

David L. Milgram, Azriel Rosenfeld, "Algorithms and Hardware 

Technology for Image Recognition, Project Status Report- 

September 1977", pp. 139-140. 

3. May 3-4, 1978.  Cambridge, Massachusetts 

T. J. Willett, G. E. Tisdale, "Hardware Implementation of a 

Smart Sensor:  A Review", pp. 1-8. 

Azriel Rosenfeld, "Some Recent Results Using Relaxation-Like 

Processes", pp. 100-104. 

David L. Milgram, "Results in FLIR Target Detection and 

Classification" , pp. 118-124. 

Azriel Rosenfeld, David L. Milgram, "Algorithms and Hardware 

Technology for Image Recognition", p. 142. 

c)  Other Publications 

Thomas Willett, Nathan Bluzer, "Automatic Target Cueing on 

the Focal Plane", Proceedings of the Seventh Annual 

Symposium on Automatic Imagery Pattern Recognition, 

May 23-24, 1977, College Park, MD, pp. 8-9. 
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David L. Milgram, "Automatic Object Detection in FLIR Images", 

Proceedings of the International Conference on Cybernetics 

and Society, September 19-21, 1977, Washington, D.C., 

pp. 617-621. 

Durga P. Panda, "A Method of Adaptive Smoothing and Edge 

Enhancement", Proceedings of the International Conference 

on Cybernetics and Society, September 19-21, 1977, 

Washington, D.C., pp. 648-656. 

Charles R. Dyer, David L. Milgram, "VIEWMASTER - A System for 

Building Image Processing Programs", Proceedings of the 

Eighth Annual Symposium on Automatic Imagery Pattern 

Recognition, April 3-4, 1978, Gaithersburg, MD, pp. 170- 

179. 
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